請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49759完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳耀銘 | |
| dc.contributor.author | Cheng-Yu Tang | en |
| dc.contributor.author | 唐丞譽 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:46:32Z | - |
| dc.date.available | 2019-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-12 | |
| dc.identifier.citation | [1] T. Strasser, F. Andren, J. Kathan, C. Cecati, C. Buccella, P. Siano, P. Leitao, G. Zhabelova, V. Vyatkin, P. Vrba, and V. Marik, “A review of architectures and concepts for intelligence in future electric energy systems,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 2424-2438, Apr. 2015.
[2] Z. Kan, Z. Guo, C. Zhang, and X. Meng, “Research on droop control of inverter interface in autonomous microgrid,” in Proc. IEEE PEAC, 2014, pp. 195-199. [3] B. Zhao, Q. Song, W. Liu, and Y. Xiao, “Next-generation multi-functional modular intelligent UPS system for smart grid,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3602-3618, Sept. 2013. [4] D. Jayaweera, “Security enhancement with nodal criticality-based integration of strategic micro grids,” IEEE Trans. Power Syst., vol. 30, no. 1, pp. 337-345, Jan. 2015. [5] H. Kakigano, Y. Miura, and T. Ise, “Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique,” IEEE Trans. Power Electron., vol.28, no.5, pp. 2246-2258, May. 2013. [6] T. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, “Supervisory control of an adaptive-droop regulated dc microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, Feb. 2014. [7] C. Jin, P. Wang, J. Xiao, Y. Tang, and F. H. Choo, “Implementation of hierarchical control in dc microgrids,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 4032-4042, Aug. 2014. [8] S. Dasgupta, S. N. Mohan, S. K. Sahoo, and S. K. Panda, “Application of four-switch-based three-phase grid-connected inverter to connect renewable energy source to a generalized unbalance microgrid system,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1204-1215, Mar. 2013. [9] A. D. Paquette and D. M. Divan, “Providing improved power quality in microgrids: difficulties in competing with existing power-quality solutions,” IEEE Ind. Appl. Mag., vol. 20, no. 5, pp. 34-43, Sept.-Oct. 2014. [10] P. Shamsi and B. Fahimi, “Stability assessment of a dc distribution network in a hybrid micro-grid application,” IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2527-2534, Sept. 2014. [11] J. Zhang, D. Xu, G. Shen, Y. Zhu, N. He, and J. Ma, “An improved islanding detection method for a grid-connected inverter with intermittent bilateral reactive power variation,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 268-278, Jan. 2013. [12] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, “Control of power converters in AC microgrids,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734-4749, Nov. 2012. [13] R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Power management and power flow control with back-to-back converters in a utility connected microgrid,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 821-834, May 2010. [14] H. Akagi and R. Kitada, “Control and design of a modular multilevel cascade BTB system using bidirectional isolated dc/dc converters,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2457-2464, Sep. 2011. [15] R. J. Millnitz dos Santos, J. C. da Cunha, and M. Mezaroba, “A simplified control technique for a dual unified power quality conditioner,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp.5851-5860, Nov. 2014. [16] R. P. Kandula, A. Iyer, R. Moghe, J. E. Hernandez and D. Divan, “Power router for meshed systems based on a fractionally rated back-to-back converter,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5172-5180, Oct. 2014. [17] P. Khamphakdi, K. Sekiguchi, M. Hagiwara, and H. Akagi, “A transformerless back-To-back (BTB) system using modular multilevel cascade converters for power distribution systems,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1866-1875, Apr. 2015. [18] J.-S. Lee, K.-B. Lee, and F. Blaabjerg, “Open-switch fault detection method of a back-to-back converter using NPC topology for wind turbine systems,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 325-335, Jan.-Feb. 2015. [19] M. Shahbazi, P. Poure, S. Saadate, and M. R. Zolghadri, “FPGA-based reconfigurable control for fault-tolerant back-to-back converter without redundancy,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3360-3371, Aug. 2013. [20] J. S. S. Prasad and G. Narayanan, “Minimization of grid current distortion in parallel-connected converters through carrier interleaving,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 76-91, Jan. 2014. [21] L. Tarisciotti, P. Zanchetta, A. Watson, S. Bifaretti, and J. C. Clare, “Modulated model predictive control for a seven-level cascaded H-Bridge back-to-back converter,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5375-5383, Oct. 2014. [22] Z. Zhang, H. Xu, M. Xue, Z. Chen, T. Sun, R. Kennel, and C. Hackl, “Predictive control with novel virtual-flux estimation for back-to-back power converters,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 2823-2834, May 2015. [23] C.-Y. Tang, Y.-T. Chen, Y.-F. Chen, Y.-M. Chen, and Y.-R. Chang, “Multi-mode interleaved boost converter for photovoltaic power system with low-voltage ride-through capability,” in Proc. IEEE ECCE, 2013, pp.1096-1101. [24] T. E. Seiphetlho and A. P. J. Rens, “The analysis of voltage and current unbalance by application of active and reactive power in the fundamental frequency negative-sequence components,” in Proc. IEEE ICHQP, 2012, pp.420-426, 17-20. [25] C.-Y. Tang, Y.-F. Chen, Y.-C. Hsu, Y. -M. Chen and Y. -D. Lee, “DC-bus voltage regulation strategy for three-phase back-to-back active power conditioners,” in Proc. IEEE ECCE, 2014, pp.3957-3963. [26] Y.-T. Chen, Y.-F. Chen, C.-Y. Tang, Y.-M. Chen and Y.-R. Chang, “An active power conditioner with a multi-mode power control strategy for a microgrid,” in Proc. IEEE IFEEC, 2013, pp.93-97. [27] J. C. Wu, K. D. Wu, H. L. Jou and S.nK. Chang, “Seven-level active power conditioner for a renewable power generation system,” IET Renew. Power Gener., vol.8, no.7, pp.807-816, Sep. 2014. [28] L. Liu, H. Li, Y. Xue and W. Liu, “Reactive power compensation and optimization strategy for grid-interactive cascaded photovoltaic systems,” IEEE Trans. Power Electron., vol.30, no.1, pp.188-202, Jan. 2015. [29] A. Mohamed, M. Elshaer, and O. Mohammed, 'Bi-directional AC-DC/DC-AC converter for power sharing of hybrid AC/DC systems,' in Proc. IEEE PESGM 2011, pp. 1-8, 24-29. [30] U. K. Madawala and D. J. Thrimawithana, “Current sourced bi-directional inductive power transfer system,” IET Power Electron., vol.4, no.4, pp. 471-480, Apr. 2011. [31] C.-Y. Tang, Y.-T. Chen, Y.-M. Chen and Y.-R. Chang, “PV power system with multi-mode operation and low-voltage ride-through capability,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7524-7533, Dec. 2015. [32] C.-Y. Tang, Y.-F. Chen, Y.-M. Chen and Y.-R. Chang, “DC-link voltage control strategy for three-phase back-to-back active power conditioners,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6306-6316, Oct. 2015. [33] Z. Shu, S. Xie, and Q. Li, “Single-phase back-to-back converter for active power balancing, reactive power compensation, and harmonic filtering in traction power system,” IEEE Trans. Power Electron., vol.26, no. 2, pp. 334-343, Feb. 2011. [34] J. Pou, R. Pindado, D. Boroyevich, and P. Rodriguez, “Limits of the neutral-point balance in back-to-back-connected three-level converters,” IEEE Trans. Power Electron., vol.19, no.3, pp. 722-731, May 2004. [35] C. T. Rim, D. Y. Hu, G. H. Cho, “Transformers as equivalent circuits for switches: general proofs and D-Q transformation-based analyses,” IEEE Trans. Ind. Appl., vol. 26, no. 4, pp. 777-785, Jul.-Aug. 1990. [36] S.-B. Han, N.-S. Choi, C.-T. Rim, and G.-H. Cho, “Modeling and analysis of static and dynamic characteristics for buck-type three-phase PWM rectifier by circuit DQ transformation,” IEEE Trans. Power Election., vol.13, no.2, pp. 323-336, Mar. 1998. [37] X. Bao, F. Zhuo, Y. Tian, and P. Tan, “Simplified feedback linearization control of three-phase photovoltaic inverter with an LCL filter,” IEEE Trans. Power Electron., vol.28, no.6, pp. 2739-2752, Jun. 2013. [38] A. Kahrobaeian and Y. A. R. I. Mohamed, “Analysis and mitigation of low-frequency instabilities in autonomous medium-voltage converter-based microgrids with dynamic loads,” IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1643-1658, Apr. 2014. [39] Z. Yao and M. Hao, “Analysis of networked control schemes and data-processing method for parallel inverters,” IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1834-1844, Apr. 2014. [40] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, and L. Huang, “State-of-charge balance using adaptive droop control for distributed energy storage systems in dc microgrid applications,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp.2804-2815, Jun. 2014. [41] X. Lu, J. M. Guerrero, K. Sun, and J. C. Vasquez, “An improved droop control method for dc micro-grids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1800-1812, Apr. 2014. [42] Y.-M. Chen, H.-C. Wu, M.-W. Chou, and K.-Y. Lee, “Online failure prediction of the electrolytic capacitor for LC filter of switching-mode power converters,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 400–406, Jan. 2008. [43] J. L. Stevens, J. S. Shaffer, and J. T. Vandenham, “The service life of large aluminum electrolytic capacitors: Effects of construction and application,” in Proc. IEEE IAS, 2001, pp. 2493–2499. [44] M. L. Gasperi, “Life prediction modeling of bus capacitors in AC variable-frequency drives,” IEEE Trans. Ind. Appl., vol. 41, no. 6, pp. 1430-1435, Nov.-Dec. 2005. [45] M. L. Gasperi, “Life prediction model for aluminum electrolytic capacitors,” in Proc. IEEE IAS, 1996, pp. 1347–1351. [46] J. Jung, S. Lim, and K. Nam, “A feedback linearizing control scheme for a PWM converter-inverter having a very small DC-link capacitor,” IEEE Trans. Ind. Appl., vol.35, no.5, pp. 1124-1131, Sep-Oct. 1999. [47] M. Hagiwara and H. Akagi, “An approach to regulating the dc-link voltage of a voltage-source BTB system during power line faults, ” IEEE Trans. Ind. Appl., vol. 42, no. 2, pp. 1263-1271, Sep.-Oct. 2005. [48] J. Alcalá, E. Bárcenas and V. Cárdenas, “Practical methods for tuning PI controllers in the DC-link voltage loop in back-to-back power converters,” in Proc. IEEE CIPE, 2010, pp. 46-52. [49] Q. N. Trinh and H. H. Lee, “An advanced current control strategy for three-phase shunt active power filters,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5400-5410, Dec. 2013. [50] S. Lei, G. Asher, S. Bozhko, P. Chintanbhai, and P. Wheeler, “Active DC bus capacitor harmonic current minimization method for back-to-back converters,” in Proc. PEMD, 2014, pp. 1-5. [51] Q. Zian, H. Wang, F. Blaabjerg, and P. C. Loh, “Investigation into the control methods to reduce the DC-link capacitor ripple current in a back-to-back converter,” in Proc. IEEE ECCE, 2014, pp. 203-210. [52] B. G. Gu and K. Nam, “A dc-link capacitor minimization method through direct capacitor current control,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 573-581, Mar.-Apr. 2005. [53] L. Yin, T. Lu, F. He, and L. Yuan, “A predictive dc voltage control scheme for back-to-back converters based on energy balance modeling,” in Proc. IEEE IECMS, 2011, pp.1, 6, 20-23. [54] Y.-M. Chen, C.-H. Chang, and H.-C. Wu, “DC-link capacitor selections for the single-phase grid-connected PV system,” in Proc. PEDS, 2009, pp. 72-77. [55] Y.-M. Chen, C.-S. Cheng, and H.-C. Wu, “Grid-connected hybrid PV/wind power generation system with improved DC link voltage regulation strategy,” in Proc. IEEE APEC 2006, pp. 1088–1094. [56] Y.-M. Chen, H.-C. Wu, Y.-C. Chen, K.-Y. Lee, and S.-S. Shyu, “The ac line current regulation strategy for the grid-connected PV system,” IEEE Trans. Power Electron., vol. 25, no. 1, pp. 209-218, Jan. 2010. [57] N. Hur, J. Jung, and K. Nam, “A fast dynamic DC-link power-balancing scheme for a PWM converter-inverter system,” IEEE Trans. Ind. Electron., vol. 48, no. 4, pp. 794-803, Aug. 2001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49759 | - |
| dc.description.abstract | 本論文主旨為提出適用於三相背對背主動式電力調節器之直流鏈電壓控制策略。當微電網發生異常時,主動式電力調節器可藉由實、虛功率補償與雙向功率傳遞,調節微電網之頻率與電壓。此外,為達成功率潮流平衡,直流鏈電容為主動式電力調節器中不可或缺之元件。然而,為提升微電網之穩定度、電力品質以及降低電力調節器所需之直流鏈電容值,本論文提出四種直流鏈電壓調控策略,分別為: (一) 優化電流調變策略,(二) 適應性直流電壓調變策略,(三) 動態優化電流調變策略與 (四) 可變直流鏈電壓斜率控制。
主動式電力調節器於穩態操作下,所提出之優化電流調變策略可減緩輸入電流之擾動,且於一個市電週期內完成直流鏈電壓調控。然而,當輸出功率發生瞬間或連續之改變時,直流鏈電壓將產生劇烈變動,保護機制亦易被觸發。因此,本論文提出適應性直流電壓調變與動態優化電流調變策略,除可避免直流鏈電壓於功率劇烈變動時觸發保護外,亦可降低直流鏈電容值。另一方面,所提出之可變直流鏈電壓斜率控制,可進一步於功率劇烈變動時,減緩直流鏈電壓擾動幅度。本論文完整分析所提出策略之理論推導。最後以5kVA背靠背主動式電力調節器原型機之實驗結果,驗證所提出策略之性能。 | zh_TW |
| dc.description.abstract | The objective of this dissertation is to propose a three-phase back-to-back active power conditioner (APC) with dc-link voltage control strategies for micro-grid applications. The demanded active and reactive power of the APC via bi-directional power flow control can help to regulate the frequency and voltage of the micro-grid to achieve high stability. On the other hand, the dc-link capacitor is an essential component of the back-to-back APC for power flow balancing. In order to provide the ability to improve the power quality and stability of the micro-grid as well as to reduce the dc-link capacitance, four dc-link voltage control methods are developed: a) optimal ac line current regulation (OCR) strategy, b) adaptive dc-link voltage regulation (ADVR) strategy, c) dynamic optimal ac line current regulation (DOCR) strategy and d) flexible DC-link voltage slope (FDVS).
Under steady state, the proposed OCR strategy is able to minimize the change of the input current variation as well as to achieve the dc-link regulation in one 60Hz cycle. When an abrupt or continuous power change occurs, the dc-link voltage of the APC will be changed dramatically and the voltage protection could easily be triggered. Therefore, the novel ADVR and DOCR strategy are proposed in order to prevent the false alarm as well as to reduce the required dc-link capacitance. On the other hand, the proposed FDVS can further mitigate the DC-link voltage variation during the large power variation transient. Mathematical equations for proposed control strategies are derived thoroughly. Furthermore, procedures to determine the DC-link capacitance with the proposed strategies are developed. Finally, experimental results obtained from a 5 kVA back-to-back APC verify the feasibility and the performance of the proposed line current regulation strategies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:46:32Z (GMT). No. of bitstreams: 1 ntu-105-D01921011-1.pdf: 21359458 bytes, checksum: 221af0a21f88ab583c0df580b32e03f4 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員審定書 ..I
誌謝 II 中文摘要 III Abstract IV Table of Contents V List of Figures VII List of Tables X Abbreviations XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Dissertation Outline 3 Chapter 2 Active Power Conditioners for Micro-Grids 5 2.1 The Micro-Grid System 5 2.1.1 Architecture and Characteristics of Micro-Grids 5 2.1.2 Active/Reactive Power Compensation 6 2.2 Three-Phase Back-to-Back APC 9 2.2.1 Power Stage and Operational Principle 9 2.2.2 Three-Phase Sinusoidal Pulse Width Modulation 10 2.2.3 Direct-Quadrature Transformation 14 2.2.4 Droop Control Strategy 18 2.3 Review of DC-Link Voltage Control Methods 20 2.3.1 Proportional-Integral Voltage Control 20 2.3.2 Direct Capacitor Current Control 22 2.3.3 Energy Balancing Control 24 2.3.4 Hysteresis Voltage Control 25 2.3.5 Summary 27 Chapter 3 Proposed DC-Link Voltage Control Strategies 28 3.1 Optimal AC Line Current Regulation 28 3.2 Adaptive DC-Link Voltage Regulation 31 3.3 Dynamic Optimal AC Line Current Regulation 35 3.3.1 Inside the Voltage Hysteresis Band 35 3.3.2 Outside the Voltage Hysteresis Band 38 3.4 Flexible DC-Link Voltage Slope 40 3.5 DC-Link Capacitance Selection 43 3.5.1 Capacitance with OCR 43 3.5.2 Capacitance with ADVR 44 3.5.3 Capacitance with DOCR 46 Chapter 4 Hardware Experimental Verifications 48 4.1 Circuit Diagram and Specifications 48 4.2 Bi-Directional Power Flow Control 50 4.2.1 Active Power Compensation 51 4.2.2 Reactive Power Compensation 52 4.2.3 Active and Reactive Power Compensation 53 4.3 Proposed DC-Link Voltage Regulation Strategies 55 4.3.1 Optimal AC Line Current Regulation 55 4.3.2 Adaptive DC-Link Voltage Regulation 58 4.3.3 Dynamic Optimal AC Line Current Regulation 61 4.3.4 Flexible DC-Link Voltage Slope 67 Chapter 5 Conclusions and Suggested Future Research 69 5.1 Summary and Major Contributions 69 5.2 Suggestions for Future Research 70 References 71 Vita 79 | |
| dc.language.iso | en | |
| dc.subject | 雙向功率潮流控制 | zh_TW |
| dc.subject | 微型電網 | zh_TW |
| dc.subject | 主動式電力調節器 | zh_TW |
| dc.subject | 直流鏈電壓控制 | zh_TW |
| dc.subject | Bi-directional Power Flow | en |
| dc.subject | Micro-gird | en |
| dc.subject | DC-Link Voltage Control | en |
| dc.subject | Active Power Conditioner | en |
| dc.title | 三相背對背主動式電力調節器之直流鏈電壓控制策略 | zh_TW |
| dc.title | DC-Link Voltage Control Strategies for Three-Phase Back-to-Back Active Power Conditioners | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 潘晴才,陳建富,賴炎生,邱煌仁,陳德玉 | |
| dc.subject.keyword | 微型電網,主動式電力調節器,雙向功率潮流控制,直流鏈電壓控制, | zh_TW |
| dc.subject.keyword | Micro-gird,Active Power Conditioner,Bi-directional Power Flow,DC-Link Voltage Control, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU201602466 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 20.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
