請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49757
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏志潾 | |
dc.contributor.author | Guan-Ming Chen | en |
dc.contributor.author | 陳冠銘 | zh_TW |
dc.date.accessioned | 2021-06-15T11:46:24Z | - |
dc.date.available | 2019-08-24 | |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-13 | |
dc.identifier.citation | Aller, J. Y., & Aller, R. C. (1986). Evidence for localized enhancement of biological associated with tube and burrow structures in deep-sea sediments at the HEEBLE site, western North Atlantic. Deep Sea Research Part A. Oceanographic Research Papers, 33(6), 755–790. http://doi.org/10.1016/0198-0149(86)90088-9
Bao, H., Lee, T.-Y., Huang, J.-C., Feng, X., Dai, M., & Kao, S.-J. (2015). Importance of Oceanian small mountainous rivers (SMRs) in global land-to-ocean output of lignin and modern biospheric carbon. Scientific Reports, 5. http://doi.org/10.1038/srep16217 Blake, J. A. (1985). Polychaeta from the vicinity of deep-sea geothermal vents in the Eastern Pacific. I: Euphrosinidae, Phyllodocidae, Hesionidae, Nereididae, Glyceridae, Dorvilleidae, Orbiniidae, and Maldanidae. Bulletin of the Biological Society of Washington, (6), 67–101. Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67. http://doi.org/10.1890/13-0133.1 Chao, A., Wang, Y. T., & Jost, L. (2013). Entropy and the species accumulation curve: a novel entropy estimator via discovery rates of new species. Methods in Ecology and Evolution, 4(11), 1091–1100. http://doi.org/10.1111/2041-210X.12108 Chiang, C.-S., & Yu, H.-S. (2006). Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology, 80(3–4), 199–213. http://doi.org/10.1016/j.geomorph.2006.02.008 Chiang, K.-W., Peng, W.-C., Yeh, Y.-H., & Chen, K.-H. (2009). Study of Alternative GPS Network Meteorological Sensors in Taiwan: Case Studies of the Plum Rains and Typhoon Sinlaku. Sensors, 9(6), 5001–5021. http://doi.org/10.3390/s90605001 Chiou, M.-D., Jan, S., Wang, J., Lien, R.-C., & Chien, H. (2011). Sources of baroclinic tidal energy in the Gaoping Submarine Canyon off southwestern Taiwan. Journal of Geophysical Research: Oceans, 116(C12), C12016. http://doi.org/10.1029/2011JC007366 Cunha, M. R., Paterson, G. L. J., Amaro, T., Blackbird, S., de Stigter, H. C., Ferreira, C., … Billett, D. S. M. (2011). Biodiversity of macrofaunal assemblages from three Portuguese submarine canyons (NE Atlantic). Deep Sea Research Part II: Topical Studies in Oceanography, 58(23–24), 2433–2447. http://doi.org/10.1016/j.dsr2.2011.04.007 De Leo, F. C., Vetter, E. W., Smith, C. R., Rowden, A. A., & McGranaghan, M. (2014). Spatial scale-dependent habitat heterogeneity influences submarine canyon macrofaunal abundance and diversity off the Main and Northwest Hawaiian Islands. Deep Sea Research Part II: Topical Studies in Oceanography, 104, 267–290. http://doi.org/10.1016/j.dsr2.2013.06.015 Escobar Briones, E., Estrada Santillán, E. L., & Legendre, P. (2008). Macrofaunal density and biomass in the Campeche Canyon, Southwestern Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography, 55(24–26), 2679–2685. http://doi.org/10.1016/j.dsr2.2008.07.017 Etter, R. J., & Grassle, J. F. (1992). Patterns of species diversity in the deep sea as a function of sediment particle size diversity. Nature, 360(6404), 576–578. http://doi.org/10.1038/360576a0 Gage, J. D., & Tyler, P. A. (1991). Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor. Cambridge University Press. Garcia, R., Koho, K. A., Stigter, H. C. D., Epping, E., Koning, E., & Thomsen, L. (2007). Distribution of meiobenthos in the Nazaré canyon and adjacent slope (western Iberian Margin) in relation to sedimentary composition. Marine Ecology Progress Series, 340, 207–220. http://doi.org/10.3354/meps340207 Gooday, A. J. (2002). Biological Responses to Seasonally Varying Fluxes of Organic Matter to the Ocean Floor: A Review. Journal of Oceanography, 58(2), 305–332. http://doi.org/10.1023/A:1015865826379 Grassle, J. F., & Maciolek, N. J. (1992). Deep-Sea Species Richness: Regional and Local Diversity Estimates from Quantitative Bottom Samples. The American Naturalist, 139(2), 313–341. Harris, P. T. (2014). Shelf and deep-sea sedimentary environments and physical benthic disturbance regimes: A review and synthesis. Marine Geology, 353, 169–184. http://doi.org/10.1016/j.margeo.2014.03.023 Hill, M. O. (1973). Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology, 54(2), 427–432. http://doi.org/10.2307/1934352 Hooker, S. K., Whitehead, H., & Gowans, S. (1999). Marine Protected Area Design and the Spatial and Temporal Distribution of Cetaceans in a Submarine Canyon. Conservation Biology, 13(3), 592–602. http://doi.org/10.1046/j.1523-1739.1999.98099.x Hsu, F.-H., Su, C.-C., Wang, C.-H., Lin, S., Liu, J., & Huh, C.-A. (2014). Accumulation of terrestrial organic carbon on an active continental margin offshore southwestern Taiwan: Source-to-sink pathways of river-borne organic particles. Journal of Asian Earth Sciences, 91, 163–173. http://doi.org/10.1016/j.jseaes.2014.05.006 Hsu, S.-K., Kuo, J., Lo, C.-L., Tsai, C.-H., Doo, W.-B., Ku, C.-Y., & Sibuet, J.-C. (2008). Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 767. http://doi.org/10.3319/TAO.2008.19.6.767(PT) Hunter, P. R., & Gaston, M. A. (1988). Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. Journal of Clinical Microbiology, 26(11), 2465–2466. Huston, M. (1979). A General Hypothesis of Species Diversity. The American Naturalist, 113(1), 81–101. Hutchings, P. (1998). Biodiversity and functioning of polychaetes in benthic sediments. Biodiversity & Conservation, 7(9), 1133–1145. http://doi.org/10.1023/A:1008871430178 Ingole, B. S., Ansari, Z. A., Rathod, V., & Rodrigues, N. (2001). Response of deep-sea macrobenthos to a small-scale environmental disturbance. Deep Sea Research Part II: Topical Studies in Oceanography, 48(16), 3401–3410. http://doi.org/10.1016/S0967-0645(01)00048-0 Kunze, E., Rosenfeld, L. K., Carter, G. S., & Gregg, M. C. (2002). Internal Waves in Monterey Submarine Canyon. Journal of Physical Oceanography, 32(6), 1890–1913. http://doi.org/10.1175/1520-0485(2002)032<1890:IWIMSC>2.0.CO;2 Leduc, D., Rowden, A. A., Probert, P. K., Pilditch, C. A., Nodder, S. D., Vanreusel, A., … Witbaard, R. (2012). Further evidence for the effect of particle-size diversity on deep-sea benthic biodiversity. Deep Sea Research Part I: Oceanographic Research Papers, 63, 164–169. http://doi.org/10.1016/j.dsr.2011.10.009 Levin, L. A., Etter, R. J., Rex, M. A., Gooday, A. J., Smith, C. R., Pineda, J., … Pawson, D. (2001). Environmental Influences on Regional Deep-Sea Species Diversity. Annual Review of Ecology and Systematics, 32, 51–93. Levin, L. A., Leithold, E. L., Gross, T. F., Huggett, C. L., & DiBacco, C. (1994). Contrasting effects of substrate mobility on infaunal assemblages inhabiting two high-energy settings on Fieberling Guyot. Journal of Marine Research, 52(3), 489–522. http://doi.org/10.1357/0022240943077028 Li, M. Z., Sherwood, C. R., & Hill, P. R. (2012). Sediments, Morphology and Sedimentary Processes on Continental Shelves: Advances in Technologies, Research and Applications (Special Publication 44 of the IAS). John Wiley & Sons. Liu, J. T., Hsu, R. T., Hung, J.-J., Chang, Y.-P., Wang, Y.-H., Rendle-Bühring, R. H., … Yang, R. J. (2016). From the highest to the deepest: The Gaoping River–Gaoping Submarine Canyon dispersal system. Earth-Science Reviews, 153, 274–300. http://doi.org/10.1016/j.earscirev.2015.10.012 Liu, J. T., Lin, H.-L., & Hung, J.-J. (2006). A submarine canyon conduit under typhoon conditions off Southern Taiwan. Deep Sea Research Part I: Oceanographic Research Papers, 53(2), 223–240. http://doi.org/10.1016/j.dsr.2005.09.012 Liu, J. T., Wang, Y. H., Lee, I.-H., & Hsu, R. T. (2010). Quantifying tidal signatures of the benthic nepheloid layer in Gaoping Submarine Canyon in Southern Taiwan. Marine Geology, 271(1–2), 119–130. http://doi.org/10.1016/j.margeo.2010.01.016 Liu, J. T., Wang, Y.-H., Yang, R. J., Hsu, R. T., Kao, S.-J., Lin, H.-L., & Kuo, F. H. (2012). Cyclone-induced hyperpycnal turbidity currents in a submarine canyon. Journal of Geophysical Research: Oceans, 117(C4), C04033. http://doi.org/10.1029/2011JC007630 Magurran, A. E. (2013). Measuring Biological Diversity. John Wiley & Sons. McClain, C. R., & Barry, J. P. (2010). Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology, 91(4), 964–976. Meyers, P. A. (1994). Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114(3), 289–302. http://doi.org/10.1016/0009-2541(94)90059-0 Mullenbach, B. L., Nittrouer, C. A., Puig, P., & Orange, D. L. (2004). Sediment deposition in a modern submarine canyon: Eel Canyon, northern California. Marine Geology, 211(1–2), 101–119. http://doi.org/10.1016/j.margeo.2004.07.003 Nittrouer, C. A., & Wright, L. D. (1994). Transport of particles across continental shelves. Reviews of Geophysics, 32(1), 85–113. http://doi.org/10.1029/93RG02603 Paterson, G. L. J., Glover, A. G., Cunha, M. R., Neal, L., de Stigter, H. C., Kiriakoulakis, K., … Tyler, P. (2011). Disturbance, productivity and diversity in deep-sea canyons: A worm’s eye view. Deep Sea Research Part II: Topical Studies in Oceanography, 58(23–24), 2448–2460. http://doi.org/10.1016/j.dsr2.2011.04.008 Piper, D. J. W., & Normark, W. R. (2009). Processes That Initiate Turbidity Currents and Their Influence on Turbidites: A Marine Geology Perspective. Journal of Sedimentary Research, 79(6), 347–362. http://doi.org/10.2110/jsr.2009.046 Ramirez-Llodra, E., Trannum, H. C., Evenset, A., Levin, L. A., Andersson, M., Finne, T. E., … Vanreusel, A. (2015). Submarine and deep-sea mine tailing placements: A review of current practices, environmental issues, natural analogs and knowledge gaps in Norway and internationally. Marine Pollution Bulletin, 97(1–2), 13–35. http://doi.org/10.1016/j.marpolbul.2015.05.062 Rex, M. A., & Etter, R. J. (2010). Deep-sea Biodiversity: Pattern and Scale. Harvard University Press. Rex, M. A., Etter, R. J., Morris, J. S., Crouse, J., McClain, C. R., Johnson, N. A., … Avery, R. (2006). Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology Progress Series, 317, 1–8. http://doi.org/10.3354/meps317001 Rowe, G. T., & Pariente, V. (1992). Deep-Sea Food Chains and the Global Carbon Cycle. Springer Science & Business Media. Sharma, R., Nagender Nath, B., Parthiban, G., & Jai Sankar, S. (2001). Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining. Deep Sea Research Part II: Topical Studies in Oceanography, 48(16), 3363–3380. http://doi.org/10.1016/S0967-0645(01)00046-7 Shepard, F. P. (1981). Submarine Canyons: Multiple Causes and Long-Time Persistence. AAPG Bulletin, 65(6), 1062–1077. Smith, C. R., & Rabouille, C. (2002). What controls the mixed-layer depth in deep-sea sediments? The importance of POC flux. Limnology and Oceanography, 47(2), 418–426. http://doi.org/10.4319/lo.2002.47.2.0418 Snider, L. J., Burnett, B. R., & Hessler, R. R. (1984). The composition and distribution of meiofauna and nanobiota in a central North Pacific deep-sea area. Deep Sea Research Part A. Oceanographic Research Papers, 31(10), 1225–1249. http://doi.org/10.1016/0198-0149(84)90059-1 Sobarzo, M., Figueroa, M., & Djurfeldt, L. (2001). Upwelling of subsurface water into the rim of the Biobı́o submarine canyon as a response to surface winds. Continental Shelf Research, 21(3), 279–299. http://doi.org/10.1016/S0278-4343(00)00082-0 Vetter, E. W., & Dayton, P. K. (1999). Organic enrichment by macrophyte detritus, and abundance patterns of megafaunal populations in submarine canyons. Marine Ecology Progress Series, 186, 137–148. http://doi.org/10.3354/meps186137 Wei, C.-L., Rowe, G. T., Escobar-Briones, E., Boetius, A., Soltwedel, T., Caley, M. J., … Narayanaswamy, B. E. (2010). Global Patterns and Predictions of Seafloor Biomass Using Random Forests. PLOS ONE, 5(12), e15323. http://doi.org/10.1371/journal.pone.0015323 Witte, U. (2000). Vertical distribution of metazoan macrofauna within the sediment at four sites with contrasting food supply in the deep Arabian Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 47(14), 2979–2997. http://doi.org/10.1016/S0967-0645(00)00055-2 Wu, M. (2004). The Study of Flow Dynamics in Kao-ping Submarine Canyon and near Kao-ping Shelf. Retrieved June 23, 2016, from http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/ccd=vj4x1S/record?r1=1&h1=0 YU, H.-S. (2003). Geological Characteristics and Distribution of Submarine Physiographic Features in the Taiwan Region. Marine Georesources & Geotechnology, 21(3–4), 139–153. http://doi.org/10.1080/713773391 Yu, H.-S., & Hong, E. (1992). Physiographic Characteristics of the Continental Margin, Northeast Taiwan. Terrestrial, (3). Retrieved from http://ntur.lib.ntu.edu.tw/handle/246246/173863#.V2Pl1KKkFQ4 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49757 | - |
dc.description.abstract | 高屏海底峽谷源自高屏溪,為台灣陸源有機物進入南海深海的主要通道,也是海底地質災害頻繁的區域。儘管過去累積了許多峽谷環境及沉積物源匯動力學的研究,海洋學界對峽谷的底棲生態卻仍一無所知。為了探討海底峽谷環境時空變化對大型底棲動物群聚結構之影響,本研究於2015年四月、八月、十一月在高屏海底峽谷上段軸心以及鄰近峽谷的斜坡,各設立四個深度自200至1100公尺的測站,進行三次採樣。除了採集大型底棲動物,也測量海床水文及沉積物粒徑、總有機碳、總氮含量等環境資料,並利用流體靜力模式推估近底的內潮流速。研究結果顯示,峽谷內外大型底棲動物的生物群聚、密度、多樣性皆存在顯著差異,且可能受不同機制影響。靠近高屏海底峽谷頭部,受洪水引發異重流及內潮的擾動較強,海床的平均流速高,使富含有機物的粉砂和黏土沉降不易,因此生物密度及多樣性皆隨離峽谷頭距離漸遠及深度變深而增加。而內潮於峽谷內的作用普遍較峽谷外強,而底流流速則隨深度漸深而減緩,因此斜坡上沉積物的有機碳含量較峽谷為高,峽谷內外的有機碳含量也都隨著深度變深而增加。然而斜坡上大型底棲動物的平均密度卻跟沉積物有機碳含量呈負相關,且密度隨著深度變深而減少,此現象可能反映沉積物有機碳含量受到流體動力之影響,而未必代表底棲生物可使用的食物量,因為穩定環境的生物密度通常與食物供給呈正相關。而斜坡上隨深度下降的生物密度也可能減輕生物間的競爭壓力,進而促進分類群間共存,間接解釋分類群多樣性於斜坡隨深度漸深反而增加的趨勢。在高階的分類群中,多毛綱、線蟲綱、猛水蚤科在峽谷內外各採樣點皆佔有相當高的比例,而偏好穩定環境的軟甲綱小型節肢動物則不適應峽谷的擾動環境,主要出現在高屏斜坡。此外,在物理擾動流速較強的高屏峽谷,其大型底棲動物於沉積物中的垂直分布重心,顯著較環境相對穩定的高屏斜坡還深,此垂直分布重心的變化,可能受到峽谷環境移除底表棲性的軟甲綱節肢動物所致。面對全球氣候變遷,颱風及強降雨的變化勢必影響海底地質災害的頻率及強度,本研究探討大型底棲動物群聚結構隨時空變化之機制,將有助於預測峽谷底棲生態系統受氣候變遷之影響。 | zh_TW |
dc.description.abstract | Gaoping Submarine Canyon (GPSC) is the major pathway of terrestrial organic carbon into the deep South China Sea and also an area prone to frequent submarine geohazards. Despite our understanding on the sediment transports in the GPSC has accumulated over the years, their effects on the benthic ecology has never been studied. In order to understand how the spatial and temporal variations of the GPSC environments may affect the community structure of deep-sea macrobenthos, we repeatly sampled the upper GPSC and the adjacent slope (GPS) in April, August and November 2015. A total of 8 stations were sampled from 200 to 1100-m depths for macrofauna, bottom hydrography and sediment geochemistry. A 3-D, hydrostatic, internal tide model was also used to extract the bottom tidal current velocities. Our results suggest that the macrofaunal density, diversity and taxon composition were significantly different between the canyon and slope. Near the head region of GPSC, physical disturbance by hyperpycnal conditions and strong internal tide energy may depressed macrofaunal density and diversity. As the depth and distance increase away from the canyon head, the physical disturbance may be relieved and thus resulted in increase of macrofaunal density and diversity with depths. The internal tide energy was stronger in the canyon than on the slope but in gerneral the energy decreased with depths; therefore, organic carbon associated with the fine grain sediments was less likely to setttle in the canyon and near the shelf breaks, resulting in higher total organic carbon (TOC) contents in the slope sediments, as well as an increase of sedimentary TOC with depths. The macrofauna density on the slope, howerver, displayed a negative relationship with TOC and declined significantly with depth, suggesting that the TOC concentration may be controlled by hydrodnamic engery and not necessary relfected the food availability to the macrofauna. On the slope, the declined in macrofauna density also liklily relieved the compitions, promote coexistence and thus resulted in the significantly increasing diversity with depth. For the taxon composition, polychaetes, nematodes and harpacticoids thrived in both the canyon and slope, but peracarid crustaceans were either rare or disppeared from the canyon and mostly occurred on the relatively stable slope environments. In addition, the abundance-weighted mean vertical distribution of macrofauna was significantly deeper in the canyon sediments than that on the slope sediments, presumably, due to the removal of the epibenthic peracarid crustaceans in the canyon. In the wake of the global climate changes, the changes of storm and precipitations patterns likely lead to changes in frequency and intensity of submarine geohazards in the canyon. This study investigated the interpalys between submarine canyon environemts and benthic communities stucture. The reuslts will enhence our ability to predict the potential climate changes impacts on the submarine canyon ecosystems. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:46:24Z (GMT). No. of bitstreams: 1 ntu-105-R03241209-1.pdf: 11241076 bytes, checksum: 90c2314daadd8d648f2812e31d21aaeb (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 III Abstract IV 目錄 VI 表目錄 VIII 圖目錄 IX 附錄目錄 X 一、 前言 1 1.1 高屏海底峽谷環境特性 1 1.2 海底峽谷內的大型底棲動物 3 1.3 研究目的 4 二、 材料與方法 6 2.1 研究地點 6 2.2 採樣方法 6 2.3 水文資料 7 2.4 大型底棲動物分類群鑑定 7 2.5 大型底棲動物於子岩芯管之加權深度值 7 2.6 沉積物粒徑分析 8 2.7 沉積物化學分析 9 2.8 流體靜力模式之流速資料 10 2.9 環境資料轉換及分析 10 2.10 生物資料轉換及分析 11 2.11 PERMANOVA顯著性檢定 13 2.12 大型底棲動物群聚與環境相關性 15 三、 結果 16 3.1 高屏海底峽谷及高屏斜坡之環境因子 16 3.1.1 環境因子主成分分析及PERMANOVA顯著性檢定 16 3.1.2 底層水文資料 16 3.1.3 沉積物有機物含量 16 3.1.4 沉積物顆粒大小 17 3.1.5 流速模式資料 17 3.2 高屏海底峽谷及高屏斜坡之大型底棲動物資料 19 3.2.1 大型底棲動物密度 19 3.2.2 大型底棲動物分類群組成 20 3.2.3 大型底棲動物多樣性指標 20 3.2.4 大型底棲動物群聚分析 21 3.2.5 大型底棲動物於子岩芯管中之加權深度值 22 3.3 環境因子與生物群聚間的關係 23 四、 討論 24 4.1 潮汐流模式作為底棲環境擾動因子之評估 24 4.2 高屏海底峽谷及高屏斜坡底棲環境 25 4.2.1 高屏峽谷上段之霧濁層 25 4.2.2 研究區域沉積物之有機碳含量 26 4.3 高屏海底峽谷與高屏斜坡之大型底棲動物 26 4.3.1生物群聚與環境因子之關係 26 4.3.2 大型底棲動物於沉積物中垂直分布與環境因子之關係 28 4.3.3 大型底棲動物分類群組成與環境因子之關係 28 五、 總結 30 六、 參考文獻 32 七、 表 39 八、 圖 52 九、 附錄 77 | |
dc.language.iso | zh-TW | |
dc.title | 高屏海底峽谷大型底棲動物群聚結構與環境因子之關係 | zh_TW |
dc.title | Environmental Controls on Macrofaunal Community in the Gaoping Submarine Canyon off the SW Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 戴昌鳳,蕭仁傑 | |
dc.subject.keyword | 深海大型底棲動物分類群,高屏海底峽谷,群聚組成,沉積物粒徑,有機碳,擾動, | zh_TW |
dc.subject.keyword | Deep Sea Macorfauna,Gaoping Submarine Canyon,Taxon Composition,Grain Size,Organic Carbon,Disturbance, | en |
dc.relation.page | 121 | |
dc.identifier.doi | 10.6342/NTU201602419 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-14 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 10.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。