Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4974
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳亮嘉(Liang-Chia Chen)
dc.contributor.authorJen-Yu Tsengen
dc.contributor.author曾仁輿zh_TW
dc.date.accessioned2021-05-15T17:50:40Z-
dc.date.available2019-09-05
dc.date.available2021-05-15T17:50:40Z-
dc.date.copyright2014-09-05
dc.date.issued2014
dc.date.submitted2014-08-18
dc.identifier.citation[1] 張奕威, “多波長差動共焦顯微三維形貌量測技術之研究.” 博士論文. 國立臺北科技大學機電科技研究所. 2012
[2] 林俊達, “創新式雙狹縫彩色差動共焦高速形貌量測術之研發.” 碩士論文. 國立台北科技大學自動化科技研究所. 2013.
[3] M. Minsky, “Microscopy Apparatus,” U.S. patent, No. 3,013,467, 1961.
[4] T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks, ”Applied Optics, Vol. 41, Issue 22, pp. 4704-4708, 2002.
[5] M. Ishihara and H. Sasaki, “High-speed surface measurement using a nonscanning multiple-beam confocal microscope,” Optical Engineering, Vol. 38, Issue 6, pp. 1035-1040, 1999.
[6] F. Bitte, G. Dussler and T. Pfeifer, “3D micro-inspection goes DMD,” Optics and Lasers in Engineering, Vol. 36, Issue 2, pp. 155-167, 2001.
[7] “DMD.” http://www1.cs.columbia.edu/CAVE/projects/pi_micro/pi_micro.php.
[8] S. K. Nayar and Y. Nakagawa, “Shape from focus: an effective approach for rough surfaces,” Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on, Vol. 2, pp.218-225, 1990.
[9] K. B. Shi, P. Li, S. Z. Yin and Z. W. Liu, “Chromatic confocal microscopy using supercontinuum light,” Optics Express, Vol. 12, Issue 10, pp. 2096-2101, 2004.
[10] K. Shi, P. Li, S. Yin and Z. Liu, “Surface profile measurement using chromatic confocal microscopy,” Proceedings of SPIE, Vol. 5606. pp.124-131, 2004.
[11] A. K. Ruprecht, K. Korner, T. F. Wiesendanger, H. J. Tiziani and W. Osten, “Chromatic confocal detection for high Speed micro topography measurements,” Proceedings of SPIE, Vol. 5302. pp.53-60, 2004.
[12] P. C. Lin, P. C. Sun, L. J. Zhu and Y. Fainman, “Single-shot depth-section imaging through chromatic slit-scan confocal microscopy,” Applied Optics, Vol. 37, Issue 28, pp. 6764-6770, 1998.
[13] J. Kim, D. Kang and D. G. Gweon, “Spectrally encoded slit confocal microscopy,” Optics Letters, Vol. 31, Issue 11, pp. 1687-1689, 2006.
[14] T. Kim, S. H. Kim, D. H. Do, H. Yoo and D. G. Gweon, “Chromatic confocal microscopy with a novel wavelength detection method using transmittance,” Optics Express, Vol. 21, No. 5, 2013.
[15] C. H. Lee and J. P. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Optics Communications, Vol. 135, Issue 4-6, pp. 233-237, 1997.
[16] Y. Wang, C. Kuang, P. Xiu, S. Li, X. Hao and X. Liu, “A lateral differential confocal microscopy for accurate detection and localization of edge contours,” Optics and Lasers in Engineering, Vol. 53, pp. 12-18, 2014.
[17] Y. Wang, C. Kuang, Z. Gu and X. Liu, “Image subtraction method for improving lateral resolution and SNR in confocal microscopy,” Optics & Laser Technology, Vol. 48, pp. 489-494, 2013.
[18] E. Dusch, T. Dorval, N. Vincent, M. Wachsmuth and A. Genovesio, “Three-dimensional point spread function model for line-scanning confocal microscope with high-aperture objective,” Journal of Microscopy-Oxford, Vol. 228, Issue 2, pp. 132-138, 2007.
[19] H. Perrin, P. Sandoz and G. M. Tribillon, “Profilometry by spectral encoding of the optical axis, ” Proceedings of SPIE, Vol. 2340, pp.366-374, 1994.
[20] “Prism.” http://en.wikipedia.org/wiki/Prism
[21] C. S. Joseph, G. G. Jérôme and C. J. Pierre, “Quasi Confocal Extended Field Surface Sensing, ” Proceedings of SPIE, Vol. 4449, pp.178-183, 2001.
[22] “Products-Optics.” http://www.edmundoptics.com/
[23] “3-Axis Submodules.” http://www.raylase.de/products/3-achsensubmodule/
[24] “Keyence5VK-9700.”http://www.keyence.com/products/microscope/laser-microscope/vk-8700_9700_generationii/index.jsp
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4974-
dc.description.abstract本研究之目的為發展雙狹縫彩色差動共焦技術與量測探頭之開發與測試。共焦量測技術現行的發展大多以線上即時量測作為研究方向與目標,其中一項關鍵的量測方式為彩色共焦量測技術,此技術用軸向色散原理來取代傳統共焦量測技術的垂直掃描過程,可有效提升量測速度,但也因演算法是建立於色散原理架構下造成了量測時會受到待測物體反射率影響,另外須以光譜儀作為感測器也使得量測速度及架構受到了限制;另一項關鍵量測技術是差動共焦量測術,差動架構及其演算原理使得量測也不須垂直掃描,但其缺點在於及時深度量測範圍太小,使得量測應用性受限。因此,本研究結合彩色共焦技術與差動共焦技術之優點,發展一雙狹縫彩色差動共焦量測技術與量測探頭,此研究為接續先前實驗室學長之設計概念,進一步實現線上量測探頭的開發與測試。量測系統以寬頻之白光搭配線光纖作為線型光源,結合自行設計之軸向色散物鏡達成彩色共焦量測術架構。反射光訊號經過分光鏡一分為二,並於兩個彩色線型光感測器前通過一組不同寬度大小之狹縫進行空間濾波,因此兩感測器得到一組不同全寬半高值之反射光訊號,藉此以差動演算法求出強度比值對深度關係曲線,產生一即時深度量測範圍,進行待測物之三維形貌量測與重建。目前探頭即時深度量測範圍可達150 μm,量測之設計線長為14 mm。經由實驗結果之驗證,量測鏡面之待測物時單條取像時間可小於1 ms,標準階高塊量測結果之一個標準差為0.12 μm。惟因光場強度均勻性有待提升,目前可實測之線寬範圍仍未達設計值,此可由進一步改善聚光鏡組,獲得有效解決。總結來說,研發之雙狹縫彩色差動共焦量測技術改善舊有技術問題,可大幅提升即時量測範圍、光源使用效率以及量測速度等,以利增進其工業量測上運用價值及可行性。zh_TW
dc.description.abstractThis study develops a broadband differential confocal surface probe (profilometer) using novel double-slit chromatic confocal measuring principle for in-situ microscopic surface inspection. In-situ automatic optical inspection (AOI) on microstructures has become extremely important to ensure manufacturing quality in modern manufacturing fields. A multi-wavelength differential confocal surface profilometer is developed and tested by employment of an innovative double-slit conjugate configuration for generating the differential gradient in confocal measurement. This study aims to realize the conceptual design work carried previously by Mr. Jun-Da Lin at NTU AOI Lab into a probe prototype with improved measuring efficiency and accuracy. Two different sizes of slits are placed in front of their corresponding imaging unit and designed to conjugate with an object surface underlying inspection, generating the differential gradient by correlating two focus-depth-response curves. The developed system can achieve one shot inspection for line-scan profilometry without vertical scanning frequently required by conventional confocal measurement. Again, the scanning rate is greatly enhanced by more than 10 times from the achievable frame rate of a spectrometer to the one by a high speed line CCD. From the experimental test and analyses, it is verified that the vertical measurement range can be designed for a few hundreds of micrometers while its vertical measuring repeatability is less than 0.15 micrometers in one standard deviation. The measuring speed can match tight tact time requirements in in-situ AOI.en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:50:40Z (GMT). No. of bitstreams: 1
ntu-103-R01522705-1.pdf: 3933423 bytes, checksum: 221b29590ed1e85508ce3bf098bf070a (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 ................................ ................................ ................................ ................................ .... i
中文摘要 ................................ ................................ ................................ .......................... ii
ABSTRACT ABSTRACTABSTRACT ABSTRACT ................................ ................................ ................................ .................... iii
目錄 ................................ ................................ ................................ ................................ .. iv
圖目錄 ................................ ................................ ................................ .............................. vi
表目錄 ................................ ................................ ................................ .............................. xi
第 1章 緒論 ................................ ................................ ................................ ............ 1
1.1 研究背景 ................................ ................................ ................................ ........ 1
1.2 研究動機與目的 ................................ ................................ ............................ 2
1.3 論文架構 ................................ ................................ ................................ ........ 4
第 2章 文獻回顧 ................................ ................................ ................................ .... 5
2.1 引言 ................................ ................................ ................................ ................ 5
2.2 共焦量測原理 ................................ ................................ ................................ 5
2.3 共焦量測系統文獻 ................................ ................................ ........................ 6
2.4 文獻回顧總結 ................................ ................................ .............................. 18
第 3章 系統量測原理與技術 系統量測原理與技術 ................................ ................................ ............. 21
3.1 線型共焦量測系統 ................................ ................................ ...................... 21
3.2 彩色共焦量測系統 ................................ ................................ ...................... 23
3.2.1 光譜軸向色散之原理 ................................ ................................ ......... 23
v
3.2.2 彩色共焦量測原理 ................................ ................................ ............. 26
3.2.3 無窮補正型式軸向色散顯微物鏡模擬與設計之原理 ..................... 28
3.3 彩色差動共焦量測系統與架構 ................................ ................................ .. 29
3.3.1 量測系統原理 ................................ ................................ ..................... 30
3.3.2 量測系統架構 ................................ ................................ ..................... 35
第 4章 系統驗證與實結果分析 系統驗證與實結果分析 ................................ ................................ ..... 46
4.1 量測系統之像素對位 ................................ ................................ .................. 46
4.2 彩色 CCD 裝置對光源之強響應誤差校正 ................................ ............ 48
4.3 狹縫寬度組合與量測之最佳化試 ................................ .......................... 52
4.4 量測系統重複性之試 ................................ ................................ .............. 55
4.5 工業樣品量測實例結果與比較 ................................ ................................ .. 58
4.5.1 標準階高塊規量測實例一 ................................ ................................ . 58
4.5.2 標準階高塊規量測實例二 ................................ ................................ . 61
4.5.3 量測結果分析與討論 ................................ ................................ ......... 63
第 5章 結論與未來展望 結論與未來展望 ................................ ................................ ..................... 68
5.1 結論 ................................ ................................ ................................ .............. 68
5.2 未來展望 ................................ ................................ ................................ ...... 69
參考文獻 ................................ ................................ ................................ ......................... 71
dc.language.isozh-TW
dc.subject差動共焦量測技術zh_TW
dc.subject彩色共焦量測技術zh_TW
dc.subject共焦量測技術zh_TW
dc.subject三維形貌量測zh_TW
dc.subject光學量測zh_TW
dc.subjectdifferential confocalen
dc.subjectsurface profilometryen
dc.subjectOptical inspectionen
dc.subjectconfocal microcopyen
dc.subjectchromatic confocalen
dc.title線上雙狹縫彩色差動共焦量測探頭之研發zh_TW
dc.titleDevelopment of In-situ Double-slit Chromatic Differential Confocal Probeen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee范光照(Kuang-Chao Fan),葉勝利(Sheng-Lih Yeh),林世聰(Shyh-Tsong Lin)
dc.subject.keyword光學量測,共焦量測技術,彩色共焦量測技術,差動共焦量測技術,三維形貌量測,zh_TW
dc.subject.keywordOptical inspection,confocal microcopy,chromatic confocal,differential confocal,surface profilometry,en
dc.relation.page73
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf3.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved