請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49720
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周綠蘋(Lu-Ping Chow) | |
dc.contributor.author | Hsueh-Chun Chuang | en |
dc.contributor.author | 莊學群 | zh_TW |
dc.date.accessioned | 2021-06-15T11:44:03Z | - |
dc.date.available | 2025-08-12 | |
dc.date.copyright | 2020-09-04 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-12 | |
dc.identifier.citation | 1. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424. 2. Ikai, I., et al., Report of the 15th follow-up survey of primary liver cancer. Hepatol Res, 2004. 28(1): p. 21-29. 3. Altekruse, S.F., K.A. McGlynn, and M.E. Reichman, Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol, 2009. 27(9): p. 1485-91. 4. Farazi, P.A. and R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer, 2006. 6(9): p. 674-87. 5. Llovet, J.M., C. Bru, and J. Bruix, Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis, 1999. 19(3): p. 329-38. 6. Forner, A., M. Reig, and J. Bruix, Hepatocellular carcinoma. Lancet, 2018. 391(10127): p. 1301-1314. 7. Keating, G.M., Sorafenib: A Review in Hepatocellular Carcinoma. Target Oncol, 2017. 12(2): p. 243-253. 8. Adnane, L., et al., Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol, 2006. 407: p. 597-612. 9. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90. 10. Cheng, A.L., et al., Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol, 2009. 10(1): p. 25-34. 11. Zhu, Y.J., et al., New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin, 2017. 38(5): p. 614-622. 12. Niu, L., et al., New insights into sorafenib resistance in hepatocellular carcinoma: Responsible mechanisms and promising strategies. Biochim Biophys Acta Rev Cancer, 2017. 1868(2): p. 564-570. 13. Brown, W.S. and M.K. Wendt, Integrin-mediated resistance to epidermal growth factor receptor-targeted therapy: an inflammatory situation. Breast Cancer Res, 2014. 16(5): p. 448. 14. Longley, D.B. and P.G. Johnston, Molecular mechanisms of drug resistance. J Pathol, 2005. 205(2): p. 275-92. 15. Gottesman, M.M., T. Fojo, and S.E. Bates, Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer, 2002. 2(1): p. 48-58. 16. Takebe, N., et al., Retroviral transduction of human dihydropyrimidine dehydrogenase cDNA confers resistance to 5-fluorouracil in murine hematopoietic progenitor cells and human CD34+-enriched peripheral blood progenitor cells. Cancer Gene Ther, 2001. 8(12): p. 966-73. 17. Reardon, J.T., et al., Efficient nucleotide excision repair of cisplatin, oxaliplatin, and Bis-aceto-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216) platinum intrastrand DNA diadducts. Cancer Res, 1999. 59(16): p. 3968-71. 18. Portt, L., et al., Anti-apoptosis and cell survival: a review. Biochim Biophys Acta, 2011. 1813(1): p. 238-59. 19. Wheeler, D.L., et al., Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene, 2008. 27(28): p. 3944-56. 20. Sergina, N.V., et al., Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature, 2007. 445(7126): p. 437-41. 21. Tan, W., et al., Inhibition of MMP-2 Expression Enhances the Antitumor Effect of Sorafenib in Hepatocellular Carcinoma by Suppressing the PI3K/AKT/mTOR Pathway. Oncol Res, 2017. 25(9): p. 1543-1553. 22. Gedaly, R., et al., PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. Anticancer Res, 2010. 30(12): p. 4951-8. 23. Chen, K.F., et al., Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther, 2011. 337(1): p. 155-61. 24. Chen, K.F., et al., Blockade of STAT3 activation by sorafenib derivatives through enhancing SHP-1 phosphatase activity. Eur J Med Chem, 2012. 55: p. 220-7. 25. Zhai, B. and X.Y. Sun, Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J Hepatol, 2013. 5(7): p. 345-52. 26. van Zijl, F., et al., A human model of epithelial to mesenchymal transition to monitor drug efficacy in hepatocellular carcinoma progression. Mol Cancer Ther, 2011. 10(5): p. 850-60. 27. Committee, E.N., Unified Nomenclature for Eph Family Receptors and Their Ligands, the Ephrins. Cell, 1997. 90: p. 403–404. 28. Kania, A. and R. Klein, Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol, 2016. 17(4): p. 240-56. 29. Astin, J.W., et al., Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells. Nat Cell Biol, 2010. 12(12): p. 1194-204. 30. Sawamiphak, S., et al., Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature, 2010. 465(7297): p. 487-91. 31. Huusko, P., et al., Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat Genet, 2004. 36(9): p. 979-83. 32. Ieguchi, K. and Y. Maru, Roles of EphA1/A2 and ephrin-A1 in cancer. Cancer Sci, 2019. 110(3): p. 841-848. 33. Macrae, M., et al., A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell, 2005. 8(2): p. 111-8. 34. Takeuchi, S., et al., Beta2-chimaerin binds to EphA receptors and regulates cell migration. FEBS Lett, 2009. 583(8): p. 1237-42. 35. Yamazaki, T., et al., EphA1 interacts with integrin-linked kinase and regulates cell morphology and motility. J Cell Sci, 2009. 122(Pt 2): p. 243-55. 36. Hirai, H., et al., A novel putative tyrosine kinase receptor encoded by the eph gene. Science, 1987. 238(4834): p. 1717-20. 37. Zhou, Y. and H. Sakurai, Emerging and Diverse Functions of the EphA2 Noncanonical Pathway in Cancer Progression. Biol Pharm Bull, 2017. 40(10): p. 1616-1624. 38. Wiedemann, E., et al., Regulation of endothelial migration and proliferation by ephrin-A1. Cell Signal, 2017. 29: p. 84-95. 39. Himanen, J.P., et al., Ligand recognition by A-class Eph receptors: crystal structures of the EphA2 ligand-binding domain and the EphA2/ephrin-A1 complex. EMBO Rep, 2009. 10(7): p. 722-8. 40. Fox, B.P. and R.P. Kandpal, Invasiveness of breast carcinoma cells and transcript profile: Eph receptors and ephrin ligands as molecular markers of potential diagnostic and prognostic application. Biochem Biophys Res Commun, 2004. 318(4): p. 882-92. 41. Li, X., et al., Up-regulation of EphA2 and down-regulation of EphrinA1 are associated with the aggressive phenotype and poor prognosis of malignant glioma. Tumour Biol, 2010. 31(5): p. 477-88. 42. Abraham, S., et al., Expression of EphA2 and Ephrin A-1 in carcinoma of the urinary bladder. Clin Cancer Res, 2006. 12(2): p. 353-60. 43. Udayakumar, D., et al., EphA2 is a critical oncogene in melanoma. Oncogene, 2011. 30(50): p. 4921-9. 44. Thaker, P.H., et al., EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res, 2004. 10(15): p. 5145-50. 45. Han, L.P., et al., [Expression and prognostic significance of EphA2 and EphrinA-1 in ovarian serous carcinomas]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2011. 42(2): p. 179-84. 46. Kurose, H., et al., Elevated Expression of EPHA2 Is Associated With Poor Prognosis After Radical Prostatectomy in Prostate Cancer. Anticancer Res, 2019. 39(11): p. 6249-6257. 47. Mitra, D., et al., Phosphorylation of EphA2 receptor and vasculogenic mimicry is an indicator of poor prognosis in invasive carcinoma of the breast. Breast Cancer Res Treat, 2020. 179(2): p. 359-370. 48. Wu, D., et al., Prognostic value of EphA2 and EphrinA-1 in squamous cell cervical carcinoma. Gynecol Oncol, 2004. 94(2): p. 312-9. 49. Kinch, M.S., M.B. Moore, and D.H. Harpole, Jr., Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res, 2003. 9(2): p. 613-8. 50. Miyazaki, T., et al., EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Cancer, 2003. 103(5): p. 657-63. 51. Zhuang, G., et al., Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Res, 2010. 70(1): p. 299-308. 52. Miao, H., et al., EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell, 2009. 16(1): p. 9-20. 53. Tandon, M., S.V. Vemula, and S.K. Mittal, Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin Ther Targets, 2011. 15(1): p. 31-51. 54. Carles-Kinch, K., et al., Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res, 2002. 62(10): p. 2840-7. 55. Liao-Chan, S., et al., Quantitative assessment of antibody internalization with novel monoclonal antibodies against Alexa fluorophores. PLoS One, 2015. 10(4): p. e0124708. 56. Petty, A., et al., A small molecule agonist of EphA2 receptor tyrosine kinase inhibits tumor cell migration in vitro and prostate cancer metastasis in vivo. PLoS One, 2012. 7(8): p. e42120. 57. Chen, C.T., et al., Quantitative phosphoproteomic analysis identifies the potential therapeutic target EphA2 for overcoming sorafenib resistance in hepatocellular carcinoma cells. Exp Mol Med, 2020. 52(3): p. 497-513. 58. Koolpe, M., M. Dail, and E.B. Pasquale, An ephrin mimetic peptide that selectively targets the EphA2 receptor. J Biol Chem, 2002. 277(49): p. 46974-9. 59. Wu, B., et al., Design and Characterization of Novel EphA2 Agonists for Targeted Delivery of Chemotherapy to Cancer Cells. Chem Biol, 2015. 22(7): p. 876-887. 60. Eliseeva, I.A., et al., Y-box-binding protein 1 (YB-1) and its functions. Biochemistry (Mosc), 2011. 76(13): p. 1402-33. 61. Lee, C., et al., Targeting YB-1 in HER-2 overexpressing breast cancer cells induces apoptosis via the mTOR/STAT3 pathway and suppresses tumor growth in mice. Cancer Res, 2008. 68(21): p. 8661-6. 62. Evdokimova, V., et al., Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell, 2009. 15(5): p. 402-15. 63. Sutherland, B.W., et al., Akt phosphorylates the Y-box binding protein 1 at Ser102 located in the cold shock domain and affects the anchorage-independent growth of breast cancer cells. Oncogene, 2005. 24(26): p. 4281-92. 64. Ha, B., et al., YB-1 overexpression promotes a TGF-beta1-induced epithelial-mesenchymal transition via Akt activation. Biochem Biophys Res Commun, 2015. 458(2): p. 347-51. 65. Nakabayashi, H., et al., Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res, 1982. 42(9): p. 3858-63. 66. Ou, D.L., et al., Induction of DNA damage-inducible gene GADD45beta contributes to sorafenib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res, 2010. 70(22): p. 9309-18. 67. MacNab, G.M., et al., Hepatitis B surface antigen produced by a human hepatoma cell line. Br J Cancer, 1976. 34(5): p. 509-15. 68. Knowles, B.B., C.C. Howe, and D.P. Aden, Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science, 1980. 209(4455): p. 497-9. 69. Walker-Daniels, J., D.J. Riese, 2nd, and M.S. Kinch, c-Cbl-dependent EphA2 protein degradation is induced by ligand binding. Mol Cancer Res, 2002. 1(1): p. 79-87. 70. Pang, L., et al., Activation of EGFR-KLF4 positive feedback loop results in acquired resistance to sorafenib in hepatocellular carcinoma. Mol Carcinog, 2019. 58(11): p. 2118-2126. 71. Roulot, A., et al., Tumoral heterogeneity of breast cancer. Ann Biol Clin (Paris), 2016. 74(6): p. 653-660. 72. de Sousa, V.M.L. and L. Carvalho, Heterogeneity in Lung Cancer. Pathobiology, 2018. 85(1-2): p. 96-107. 73. Pribluda, A., C.C. de la Cruz, and E.L. Jackson, Intratumoral Heterogeneity: From Diversity Comes Resistance. Clin Cancer Res, 2015. 21(13): p. 2916-23. 74. Yang, P., et al., Overexpression of EphA2, MMP-9, and MVD-CD34 in hepatocellular carcinoma: Implications for tumor progression and prognosis. Hepatol Res, 2009. 39(12): p. 1169-77. 75. Hanks, S.K., et al., Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci, 2003. 8: p. d982-96. 76. Schaller, M.D., Paxillin: a focal adhesion-associated adaptor protein. Oncogene, 2001. 20(44): p. 6459-72. 77. Deramaudt, T.B., et al., Altering FAK-paxillin interactions reduces adhesion, migration and invasion processes. PLoS One, 2014. 9(3): p. e92059. 78. Lu, C.-H., To study the elevation of receptor tyrosine kinase EphA2 mediates acquired resistance to sorafenib in Huh7 cells. 2014. 79. Leone, M., J. Cellitti, and M. Pellecchia, NMR studies of a heterotypic Sam-Sam domain association: the interaction between the lipid phosphatase Ship2 and the EphA2 receptor. Biochemistry, 2008. 47(48): p. 12721-8. 80. Zhuang, G., et al., Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via phosphatidylinositol 3-Kinase-dependent Rac1 activation. J Biol Chem, 2007. 282(4): p. 2683-94. 81. Noblitt, L.W., et al., Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther, 2004. 11(11): p. 757-66. 82. Pantziarka, P., M. Pirmohamed, and N. Mirza, New uses for old drugs. BMJ, 2018. 361: p. k2701. 83. Lau, J.L. and M.K. Dunn, Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg Med Chem, 2018. 26(10): p. 2700-2707. 84. Thundimadathil, J., Cancer treatment using peptides: current therapies and future prospects. J Amino Acids, 2012. 2012: p. 967347. 85. Wang, W. and Z. Hu, Targeting Peptide-Based Probes for Molecular Imaging and Diagnosis. Adv Mater, 2019. 31(45): p. e1804827. 86. Orban, E., et al., A new daunomycin-peptide conjugate: synthesis, characterization and the effect on the protein expression profile of HL-60 cells in vitro. Bioconjug Chem, 2011. 22(10): p. 2154-65. 87. Li, S., et al., Synthesis and biological evaluation of a peptide-paclitaxel conjugate which targets the integrin alphavbeta(6). Bioorg Med Chem, 2011. 19(18): p. 5480-9. 88. Kwekkeboom, D.J., et al., Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol, 2008. 26(13): p. 2124-30. 89. Svensen, N., et al., Screening of a combinatorial homing peptide library for selective cellular delivery. Angew Chem Int Ed Engl, 2011. 50(27): p. 6133-6. 90. Saw, P.E. and E.W. Song, Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell, 2019. 10(11): p. 787-807. 91. Xiao, J., A. Burn, and T.J. Tolbert, Increasing solubility of proteins and peptides by site-specific modification with betaine. Bioconjug Chem, 2008. 19(6): p. 1113-8. 92. Gorham, R.D., Jr., et al., New compstatin peptides containing N-terminal extensions and non-natural amino acids exhibit potent complement inhibition and improved solubility characteristics. J Med Chem, 2015. 58(2): p. 814-26. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49720 | - |
dc.description.abstract | 肝癌是全世界盛行率與死亡率名列前茅的癌症之一。原發性肝癌中最常見的是肝細胞癌 (hepatocellular carcinoma, HCC),約占肝癌整體比例八成。當肝細胞癌發生至晚期 (advanced stage)只能依靠藥物控制。蕾莎瓦 (sorafenib) 是少數被核可使用於晚期肝細胞癌的標靶治療藥物。但許多臨床文獻指出病人在接受治療後會產生對蕾莎瓦的抗藥性。實驗室先前的研究,在質譜分析中發現EphA2會在具有抗藥性的HuH-7R中被大量表現。為了證實EphA2對於抗藥性的影響,所以使用了RNA干擾的技術抑制EphA2的表現,在此實驗中發現EphA2的抑制,降低了HuH-7R對於蕾莎瓦的抗藥性、生長、移動、侵襲等癌化現象。因此我們想了解EphA2對於其他肝細胞癌細胞株是否也有類似的影響。於是使用了Hep3B、PLC-5、SK-Hep1來做驗證,發現SK-Hep1與HuH-7R相似。兩株細胞對蕾莎瓦的耐受度都較高,並且同樣具有高度表現的EphA2與EphA2 Serine 897 (S897) 位點磷酸化。接下來,對SK-Hep1細胞進行EphA2表現的抑制。結果發現抑制EphA2後,同樣的提高細胞對於蕾莎瓦的感受度,並且抑制了細胞生長、移動、侵襲等能力。先前質譜分析的結果發現EphA2中磷酸化位點S897的大量的提高。於是我們想進一步了解這個磷酸化位點對於癌症抗藥性及癌化現象的影響。在HuH-7R細胞中以慢病毒送入帶有EphA2-wild type或EphA2-S897A的載體,發現去除S897磷酸化對於抗藥性與癌化現象與抑制EphA2表現實驗相同都有抑制抗藥性及癌症的效果。接下來我們想探討作為訊息傳遞上游的EphA2是如何傳遞訊息而影響細胞。當EphA2與配體 (ligand) Ephrin-A1結合後,會活化ligand-dependent pathway抑制Akt的磷酸化。我們也由小分子藥物篩選發現Prazosin能夠與EphA2結合並活化ligand-dependent pathway。並且發現Akt會調控一個影響HuH-7R中EMT的重要轉錄因子YB-1。後續實驗使用Ephrin-A1和Prazosin證明活化EphA2的ligand-dependent pathway會透過Akt抑制YB-1而抑制癌細胞移動、侵襲的能力。由於EphA2具有調控抑癌訊息路徑的功能,實驗室也開發了EphA2標靶胜肽 (SEK)。使用了SEK胜肽對HuH-7R進行實驗後,發現SEK能夠抑制癌細胞生長、移動的能力。綜合以上,本篇研究進一步的說明EphA2在肝癌細胞中調控對蕾莎瓦抗藥性與癌化現象的重要性,並且找出EphA2調控細胞的分子機制,最後說明標靶治療的可能性。 | zh_TW |
dc.description.abstract | Liver cancer is one of the most malignant cancer in the world. Hepatocellular carcinoma (HCC) accounts for about 80% of liver cancer. When the HCC progresses to the advanced stage, it can only be treated with few targeted drugs. Sorafenib is one of it. However, the clinical researches showed that patients treated with sorafenib gain the acquired resistance eventually. In our previous study we found that a tyrosine receptor kinase, EphA2 was highly upregulated in the sorafenib-resistant HuH-7R cell line. The EphA2 was found to play a critical role in sorafenib resistance and HCC malignancy by shRNA-mediated knockdown functional assays. To further examine the relationship between EphA2 and HCC. Three HCC cell lines (Hep3B, SK-Hep1, PLC-5) were examined for their sensitivities to sorafenib and the EphA2 expression level. From the results, SK-Hep1 showed similar IC50 to HuH-7R and expressed high level of EphA2 as HuH-7R cells does. According to the data from mass spectrometry analysis, the phosphorylation of S897 were also highly elevated in HuH-7R cells. Next, the importance of S897 were investigated by overexpressing the lentiviral vector containing EphA2-wild type or EphA2-S897A in HuH-7R cells. This mutation of phosphorylation suppressed the resistance to sorafenib and the malignancy of HuH-7R cells. EphA2 ligand-dependent pathway was activated to inhibit the phosphorylation of Akt when EphA2 binds to its ligand, Ephrin-A1. Previously, we also found prazosin, a small molecule drug, can bind with EphA2 and activate the ligand-dependent pathway. Additionally, our lab found a transcription factor associated with EMT, YB-1, which were regulated by Akt. The Ephrin-A1 and the Prazosin were adopted to treat the HuH-7R cells respectively and YB-1 was inhibited via EphA2 ligand-dependent pathway. According to the ability of EphA2 to inhibit the malignancy of cancer, we developed a peptide, SEK, specifically binds to EphA2. The cell proliferation and motility of HuH-7R cells were inhibited by SEK treatment. To summarize, this study confirmed the relationship between EphA2 and sorafenib resistance and malignancy of HCC and found a potential pathway for EphA2-targeted therapy to treat sorafenib resistant HCC. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:44:03Z (GMT). No. of bitstreams: 1 U0001-1208202002110600.pdf: 3861983 bytes, checksum: f53e7b4f27dd8aa8d3f9475e049e40f5 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iv Abstract vi 第一章 導論 1 第一節 肝癌之流行病學 1 第二節 蕾莎瓦 (sorafenib) 3 第三節 Ephrin receptor A2的重要性 6 第四節 YB-1的重要性 13 第五節 研究動機 14 第二章 實驗材料 15 第一節 肝癌細胞株 15 第二節 藥品 15 第三節 試劑組 17 第四節 抗體 17 第五節 重要儀器裝置 18 第六節 軟體 19 第三章 實驗方法 20 第一節 肝細胞癌細胞株的培養 20 第二節 細胞存活率分析 (MTT assay) 21 第三節 細胞傷口癒合實驗 (would healing assay) 22 第四節 細胞侵襲實驗 (transwell assay) 23 第五節 訊息傳遞的研究 24 第六節 蛋白質分析法 24 第四章 結果 32 第一節 EphA2與蕾莎瓦抗藥性的相關性 32 第二節 驗證EphA2在SK-Hep1細胞中的重要性 32 第三節 EphA2 Serine897 (S897) 位點磷酸化的重要性 33 第四節 EphA2 ligand-dependent pathway抑制YB-1磷酸化 35 第五節 小分子藥物Prazosin活化EphA2抑制YB-1磷酸化 35 第六節 SEK胜肽透過EphA2抑制細胞生長、移動 36 第五章 討論 37 第一節 EphA2與肝細胞癌中蕾莎瓦抗藥性的關係 37 第二節 EphA2影響癌化功能的途徑 38 第三節 以EphA2為標的進行癌症治療 39 第六章 參考文獻 42 圖 49 附錄 68 | |
dc.language.iso | zh-TW | |
dc.title | 探討在肝癌細胞株中EphA2的升高對於蕾莎瓦抗藥性及癌化的作用以及作為標靶治療的潛力 | zh_TW |
dc.title | To study the role of EphA2 mediating tumorigenesis and sorafenib resistance and the potential of EphA2-targeted therapy in hepatocellular carcinoma cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何元順(Yuan-Soon Ho),黃楓婷(Feng-Ting Huang) | |
dc.subject.keyword | 肝細胞癌,蕾莎瓦sorafenib,酪胺酸激酶受體EphA2,YB-1,Prazosin,胜肽,標靶治療, | zh_TW |
dc.subject.keyword | Hepatocellular carcinoma (HCC),sorafenib,receptor tyrosine kinase EphA2,YB-1,Prazosin,peptide,targeted therapy, | en |
dc.relation.page | 84 | |
dc.identifier.doi | 10.6342/NTU202003038 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1208202002110600.pdf 目前未授權公開取用 | 3.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。