Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49712
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor劉興華(Shing-Hwa Liu)
dc.contributor.authorPei-Shan Tsaien
dc.contributor.author蔡佩珊zh_TW
dc.date.accessioned2021-06-15T11:43:33Z-
dc.date.available2020-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-15
dc.identifier.citation1. Sarathy, H., Henriquez, G., Abramowitz, M. K., Kramer, H., Rosas, S. E., Johns, T., Kumar, J., Skversky, A., Kaskei, F,. Melamed, M. L. (2016). Abdominal Obesity, Race and Chronic Kidney Disease in Young Adults: Results from NHANES 1999-2010. PloS One, 11(5), e0153588.
2. Shrivastava, S. R., Shrivastava, P. S., & Ramasamy, J. (2013). Role of self-care in management of diabetes mellitus. J Diabetes Metab Disord, 12(1), 1.
3. Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U., & Shaw, J. E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract, 103(2), 137-149.

4. TA, S. (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37, S81.
5. American Diabetes Association. (2015). 2. Classification and diagnosis of diabetes. Diabetes Care, 38(Supplement 1), S8-S16.
6. Droumaguet, C., Balkau, B., Simon, D., Caces, E., Tichet, J., Charles, M. A., & Eschwege, E. (2006). Use of HbA1c in Predicting Progression to Diabetes in French Men and Women Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care, 29(7), 1619-1625.
7. De Luca, C., & Olefsky, J. M. (2008). Inflammation and insulin resistance. FEBS letters, 582(1), 97-105.
8. Diabetes Control and Complications Trial Research Group. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl j Med,1993(329), 977-986.
9. Fowler, M. J. (2008). Microvascular and macrovascular complications of diabetes. Clinical Diabetes, 26(2), 77-82.
10. Madonna, R., & De Caterina, R. (2011). Cellular and molecular mechanisms of vascular injury in diabetes—part I: pathways of vascular disease in diabetes. Vascul Pharmacol, 54(3), 68-74.
11. Archer, D. B. (1999). Diabetic retinopathy: some cellular, molecular and therapeutic considerations. Eye, 13(4), 497-523.
12. Kolluru, G. K., Bir, S. C., & Kevil, C. G. (2012). Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vas Med, 2012.
13. Schalkwijk, C. G., & Stehouwer, C. D. (2005). Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci, 109(2), 143-159.
14. Străchinariu, R. T. (2015). The Role of Endothelial Dysfunction in the Pathogenesis of Vascular Complications of Diabetes Mellitus-A High Priority Area of Investigation. Rom Journal Diabetes Nutr Meta Dis, 22(1), 61-66.
15. Hadi, H. A., & Suwaidi, J. A. (2007). Endothelial dysfunction in diabetes mellitus. Vascu health Risk Manag, 3(6), 853.
16. Wang, J., Song, Y., Wang, Q., Kralik, P. M., & Epstein, P. N. (2006). Causes and characteristics of diabetic cardiomyopathy. Rev Diabet Stud, 3(3), 108-117.
17. Joshi, M., Kotha, S. R., Malireddy, S., Selvaraju, V., Satoskar, A. R., Palesty, A., McFadden, DW., Parinandi, NL., Maulik, N. (2014). Conundrum of pathogenesis of diabetic cardiomyopathy: role of vascular endothelial dysfunction, reactive oxygen species, and mitochondria. Mol Cell Bio, 386(1-2), 233-249.


18. Chen, X. Y., Lv, R. J., Zhang, W., Yan, Y. G., Li, P., Dong, W. Q., Liu X., Liang, ES., Tian, HL., Lu, QH., Zhang, M. X. (2016). Inhibition of myocyte-specific enhancer factor 2A improved diabetic cardiac fibrosis partially by regulating endothelial-to-mesenchymal transition. Oncotarget.
19. Zechner, D., Knapp, N., Bobrowski, A., Radecke, T., Genz, B., & Vollmar, B. (2014). Diabetes increases pancreatic fibrosis during chronic inflammation. Exp Bio Med, 239(6), 670-676.
20. Wynn, T. A. (2004). Fibrotic disease and the TH1/TH2 paradigm. Nature Reviews Immunology, 4(8), 583-594.
21. Huang, C., & Ogawa, R. (2012). Fibroproliferative disorders and their mechanobiology. Connect Tissue Res, 53(3), 187-196.
22. Niles, N. R. (1974). Pathologic Basis of Disease. JAMA, 229(13), 1808-1809.
23. Wynn, T. A. (2008). Cellular and molecular mechanisms of fibrosis. J Pathol, 214(2), 199-210.
24. Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R., Gustafsson, E., Chandraker, A., Yuan, X., Pu WT., Roberts AB., Neilson, E. G. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med, 13(8), 952-961.
25. Kovacic, J. C., Mercader, N., Torres, M., Boehm, M., & Fuster, V. (2012). Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition from cardiovascular development to disease. Circulation, 125(14), 1795-1808.
26. Karasek, M. A. (2007). Does transformation of microvascular endothelial cells into myofibroblasts play a key role in the etiology and pathology of fibrotic disease?. Med Hypotheses, 68(3), 650-655.

27. Hinz, B., Phan, S. H., Thannickal, V. J., Prunotto, M., Desmoulière, A., Varga, J., De Wever, O., Mareel, M., Gabbiani, G. (2012). Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol,180(4), 1340-1355.
28. Gitler, A. D., Lu, M. M., Jiang, Y. Q., Epstein, J. A., & Gruber, P. J. (2003). Molecular markers of cardiac endocardial cushion development. Dev Dyn, 228(4), 643-650.

29. Combs, M. D., & Yutzey, K. E. (2009). Heart valve development regulatory networks in development and disease. Circ Res, 105(5), 408-421.
30. Zeisberg, E. M., Potenta, S. E., Sugimoto, H., Zeisberg, M., & Kalluri, R. (2008). Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol, 19(12), 2282-2287.
31. Li, J., & Bertram, J. F. (2010). Review: Endothelial‐myofibroblast transition, a new player in diabetic renal fibrosis. Nephrology, 15(5), 507-512.
32. Piera-Velazquez, S., Li, Z., & Jimenez, S. A. (2011). Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. AmJ Pathol, 179(3), 1074-1080.
33. Lin, F., Wang, N., & Zhang, T. C. (2012). The role of endothelial–mesenchymal transition in development and pathological process. IUBMB life, 64(9), 717-723.
34. Derynck, R., & Akhurst, R. J. (2007). Differentiation plasticity regulated by TGF-β family proteins in development and disease. Nat Cell Bio, 9(9), 1000-1004.
35. Poniatowski, Ł. A., Wojdasiewicz, P., Gasik, R., & Szukiewicz, D. (2015). Transforming growth factor beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. MediatorsInflamm, 2015.
36. He, P., Yu, Z. J., Sun, C. Y., Jiao, S. J., & Jiang, H. Q. (2015). Knockdown of eIF3a attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1. Cell Mo Bio (Noisy-le-Grand, France), 62(6), 107-111.
37. DiFazio, R. M., Mattila, J. T., Klein, E. C., Cirrincione, L. R., Howard, M., Wong, E. A., & Flynn, J. L. (2016). Active transforming growth factor-β is associated with phenotypic changes in granulomas after drug treatment in pulmonary tuberculosis. Fibrogenesis Tissue Repair, 9(1), 1.
38. Gerarduzzi, C., He, Q., Zhai, B., Antoniou, J., & Di Battista, J. A. (2016). Prostaglandin E2‐Dependent Phosphorylation of RAS Inhibition 1 (RIN1) at Ser 291 and 292 Inhibits Transforming Growth Factor‐β‐Induced RAS Activation Pathway in Human Synovial Fibroblasts: Role in Cell Migration. J Cell Physiol.
39. Verrecchia, F., & Mauviel, A. (2002). Transforming Growth Factor-&bgr; Signaling Through the Smad Pathway: Role in Extracellular Matrix Gene Expression and Regulation. J Inv Dermatol , 118(2), 211-215.
40. He, J., Xu, Y., Koya, D., & Kanasaki, K. (2013). Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. Clin Exp Nephrol, 17(4), 488-497.
41. Li, J., Qu, X., & Bertram, J. F. (2009). Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol,175(4), 1380-1388.
42. Huse, M., Chen, Y. G., Massagué, J., & Kuriyan, J. (1999). Crystal structure of the cytoplasmic domain of the type I TGF β receptor in complex with FKBP12.Cell, 96(3), 425-436.
43. Verrecchia, F., & Mauviel, A. (2002). Transforming Growth Factor-&bgr; Signaling Through the Smad Pathway: Role in Extracellular Matrix Gene Expression and Regulation. J Inv Dermatol, 118(2), 211-215.
44. Hocevar, B. A., Brown, T. L., & Howe, P. H. (1999). TGF‐β induces fibronectin synthesis through ac‐Jun N‐terminal kinase‐dependent, Smad4‐independent pathway. EMBO J, 18(5), 1345-1356
45. Carew, R. M., Wang, B., & Kantharidis, P. (2012). The role of EMT in renal fibrosis. Cell Tissue Res, 347(1), 103-116.
46. Liu, Y. (2011). Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 7(12), 684-696.
47. Singh, R., Barden, A., Mori, T., & Beilin, L. (2001). Advanced glycation end-products: a review. Diabetologia, 44(2), 129-146.
48. Basta, G., Schmidt, A. M., & De Caterina, R. (2004). Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res, 63(4), 582-592.
49. Peppa, M., Uribarri, J., & Vlassara, H. (2003). Glucose, advanced glycation end products, and diabetes complications: what is new and what works. Clinical diabetes, 21(4), 186-187.
50. Thomas, M. C., Forbes, J. M., & Cooper, M. E. (2005). Advanced glycation end products and diabetic nephropathy. Am J Ther, 12(6), 562-572.
51. Goldin, A., Beckman, J. A., Schmidt, A. M., & Creager, M. A. (2006). Advanced glycation end products sparking the development of diabetic vascular injury. Circulation, 114(6), 597-605.
52. Barlovic, D., Soro-Paavonen, A., & áM Jandeleit-Dahm, K. (2011). RAGE biology, atherosclerosis and diabetes. Clin Sci, 121(2), 43-55.
53. Li, J. H., Wang, W., Huang, X. R., Oldfield, M., Schmidt, A. M., Cooper, M. E., & Lan, H. Y. (2004). Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. Am J Patholo, 164(4), 1389-1397.
54. Yamagishi, S. I. (2011). Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp Gerontol, 46(4), 217-224.
55. Yamagishi, S. I., Nakamura, K., & Matsui, T. (2006). Advanced glycation end products (AGEs) and their receptor (RAGE) system in diabetic retinopathy. Curr Drug Discov Technol, 3(1), 83-88.
56. Tanikawa, T., Okada, Y., Tanikawa, R., & Tanaka, Y. (2009). Advanced glycation end products induce calcification of vascular smooth muscle cells through RAGE/p38 MAPK. J Vasc Res, 46(6), 572-580.
57. Yamagishi, S. I. (2009). Advanced glycation end products and receptor–oxidative stress system in diabetic vascular complications. The Apher and Dial, 13(6), 534-539.
58. Vlassara, H., Striker, L. J., Teichberg, S., Fuh, H., Li, Y. M., & Steffes, M. (1994). Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci U S A, 91(24), 11704-11708.
59. Ihm, S. H., Chang, K., Kim, H. Y., Baek, S. H., Youn, H. J., Seung, K. B., & Kim, J. H. (2010). Peroxisome proliferator-activated receptor-γ activation attenuates cardiac fibrosis in type 2 diabetic rats: the effect of rosiglitazone on myocardial expression of receptor for advanced glycation end products and of connective tissue growth factor. Basic Res Cardiol, 105(3), 399-407.
60. Cho, M. C., Lee, K., Paik, S. G., & Yoon, D. Y. (2008). Peroxisome proliferators-activated receptor (PPAR) modulators and metabolic disorders. PPAR Res, 2008.
61. Yamada, Y., Eto, M., Ito, Y., Mochizuki, S., Son, BK., Ogawa, S., Iijima, K., Kaneki, M., Kozaki, K., Toba, K., Akishita, M. (2015). Suppressive Role of PPARγ-Regulated Endothelial Nitric Oxide Synthase in Adipocyte Lipolysis. PloS One, 10(8), e0136597.
62. Ji, J. D., Cheon, H., Jun, J. B., Choi, S. J., Kim, Y. R., Lee, Y. H., Kim, TH., Chae, IJ., Song, GG., Yoo, DH., Kim, SY., Sohn, J., Kim, S. Y. (2001). Effects of peroxisome proliferator-activated receptor-γ (PPAR-γ) on the expression of inflammatory cytokines and apoptosis induction in rheumatoid synovial fibroblasts and monocytes. J Autommum, 17(3), 215-221.
63. Ma, C., Zhang, Y., Li, Y. Q., Chen, C., Cai, W., & Zeng, Y. L. (2015). The role of PPARγ in advanced glycation end products-induced inflammatory response in human chondrocytes. PloS One, 10(5), e0125776.
64. Brissova, M., Shostak, A., Fligner, C. L., Revetta, F. L., Washington, M. K., Powers, A. C., & Hull, R. L. (2015). Human islets have fewer blood vessels than mouse islets and the density of islet vascular structures is increased in type 2 diabetes. J Histoche Cytochem, 63(8), 637-645.

65. Konstantinova, I., & Lammert, E. (2004). Microvascular development: learning from pancreatic islets. Bioessays, 26(10), 1069-1075.
66. Li, X., Zhang, L., Meshinchi, S., Dias-Leme, C., Raffin, D., Johnson, J. D., Tretelaar, MK., Burant, C. F. (2006). Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes, 55(11), 2965-2973.

67. Sun, C., Li, S., & Li, D. (2016). Sulforaphane mitigates muscle fibrosis in mdx mice via Nrf2-mediated inhibition of TGF-β/Smad signaling. J Appl Physiol, 120(4), 377-390.
68. Arciniegas, E., Neves, Y. C., & Carrillo, L. M. (2006). Potential role for insulin‐like growth factor II and vitronectin in the endothelial–mesenchymal transition process. Differentiation, 74(6), 277-292.

69. Yang, S. J., Chen, C. Y., Chang, G. D., Wen, H. C., Chen, C. Y., Chang, S. C., Liao, J. F., Chang, C. H. (2013). Activation of Akt by advanced glycation end products (AGEs): involvement of IGF-1 receptor and caveolin-1. PloS One, 8(3), e58100.
70. Lan, H. Y. (2011). Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. Int J Biol Sci, 7(7), 1056-1067.
71. Meng, X. M., Chung, A. C., & Lan, H. Y. (2013). Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci, 124(4), 243-254.
72. Liu, H. J., Liao, H. H., Yang, Z., & Tang, Q. Z. (2016). Peroxisome Proliferator-Activated Receptor-γ Is Critical to Cardiac Fibrosis. PPAR Res, 2016.
73. Evren, S., Loai, Y., Antoon, R., Islam, S., Yeger, H., Moore, K., ... & Farhat, W. A. (2010). Urinary bladder tissue engineering using natural scaffolds in a porcine model: role of Toll-like receptors and impact of biomimetic molecules. Cells Tissues Organs, 192(4), 250-261.
74. Piera-Velazquez, S., Mendoza, F. A., & Jimenez, S. A. (2016). Endothelial to Mesenchymal Transition (EndoMT) in the Pathogenesis of Human Fibrotic Diseases. J Clin Med, 5(4), 45.

75. Li, J. H., Huang, X. R., Zhu, H. J., Oldfield, M., Cooper, M., Truong, L. D., Johnson, R. J., Lan, H. Y. (2004). Advanced glycation end products activate Smad signaling via TGF-β-dependent and independent mechanisms: implications for diabetic renal and vascular disease. FASEB J, 18(1), 176-178.
76. Yu, W., Wu, J., Cai, F., Xiang, J., Zha, W., Fan, D., Guo, S., Ming, Z., Liu, C. (2012). Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats. PLoS One, 7(12), e52013.
77. Kokudo, T., Suzuki, Y., Yoshimatsu, Y., Yamazaki, T., Watabe, T., & Miyazono, K. (2008). Snail is required for TGFβ-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells. J Cell Sci, 121(20), 3317-3324.
78. Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol, 15(3), 178.
79. Yamagishi, S. I., Matsui, T., Nakamura, K., Takeuchi, M., & Inoue, H. (2008). Telmisartan inhibits advanced glycation end products (AGEs)-elicited endothelial cell injury by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-γ activation. Protein Pept Lett, 15(8), 850-853.
80. Wei, J., Li, Z., & Yuan, F. (2014). Evodiamine might inhibit TGF‐beta1‐induced epithelial–mesenchymal transition in NRK52E cells via Smad and PPAR‐gamma pathway. Cell Biol Int, 38(7), 875-880.
81. Kitagishi, Y., & Matsuda, S. (2013). Redox regulation of tumor suppressor PTEN in cancer and aging (Review). Int J Mol Med, 31(3), 511-515.

82. Li, L. M., Hou, D. X., Guo, Y. L., Yang, J. W., Liu, Y., Zhang, C. Y., & Zen, K. (2011). Role of microRNA-214–targeting phosphatase and tensin homolog in advanced glycation end product-induced apoptosis delay in monocytes. J Immunol, 186(4), 2552-2560.

83. Lan, R., Geng, H., Polichnowski, A. J., Singha, P. K., Saikumar, P., McEwen, D. G., ... & Kriz, W. (2012). PTEN loss defines a TGF-β-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis. Am J Physio Renal Physiol, 302(9), F1210-F1223.
84. Zhang, P., Cui, W., Hankey, K. G., Gibbs, A. M., Smith, C. P., Taylor-Howell, C., ... & MacVittie, T. J. (2015). Increased Expression of Connective Tissue Growth Factor (CTGF) in Multiple Organs After Exposure of Non-Human Primates (NHP) to Lethal Doses of Radiation. Health physics, 109(5), 374-390.
85. Li, R. X., Yiu, W. H., & Tang, S. C. (2015). Role of bone morphogenetic protein-7 in renal fibrosis. Front Physiol, 6, 114.
86. Tampe, D., & Zeisberg, M. (2014). Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol, 10(4), 226-237.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49712-
dc.description.abstract糖尿病(diabetes mellitus)的產生主要為胰島素分泌不足或胰島素阻抗而引發體內高血糖之現象,為一種代謝失調之慢性疾病,此外高血糖(hyperglycemia)為引發糖尿病血管併發症(diabetes vascular complications)的主要原因之一,往往影響病患之生活品質,嚴重甚至導致死亡。已有研究指出,細胞外基質大量的堆積(extracellular matrix, ECM)會導致內皮細胞纖維化,進而使血管內皮功能受損,為糖尿病血管病變的重要致病機轉。在糖尿病血管病變進程中,糖化終產物(advanced glycation end-products, AGEs)的量會明顯增加且堆積於體內。許多研究先前已證實糖化終產物會引起多種細胞之纖維化,然而其影響胰島內皮細胞之作用尚未明瞭。內皮-間質轉換過程為調節內皮細胞功能的路徑之一,為此本研究以胰島內皮細胞株(MS1)與糖尿病小鼠,探討糖化終產物是否經內皮-間質轉換過程,導致纖維化的發生及其作用機制。實驗結果顯示,糖尿病小鼠較對照組別呈現大量AGEs累積於胰島組織中,尤其在內皮細胞,並且間質指標蛋白(α-SMA)亦大量表現於其中。此外,細胞實驗結果顯示在AGEs (50 μg/ml)暴露48小時下,E-cadherin及CD31表現顯著下降,間質細胞指標蛋白(CTGF, α-SMA和Vimentin)與纖維化指標分子(Fibronectin)表現量顯著增加,並正向調控AGEs受體(RAGE)的表現。同時,50 μg/ml AGEs會增加AKT、p-38、Smad2/3及NF-κB磷酸化並抑制BMP7及p-Smad1/5/9表現量。另一方面,給予RAGE的中和抗體與AGEs阻斷劑(Alagebrium chloride, Ala-Cl)能顯著回復內皮-間質轉換的指標蛋白(E-cadherin 及α-SMA)與纖維化指標分子(Fibronectin)的表現。總結上述,AGEs可經RAGE調控p-38/Smad2/3, AKT/NF-κB及BMP7/Smad1/5/9訊息傳遞路徑誘發胰島內皮細胞的內皮-間質轉換與纖維化產生。zh_TW
dc.description.abstractDiabetes mellitus (DM), a metabolic disorder, is characterized by hyperglycemia resulting from defects in insulin secretion or insulin resistant action. Hyperglycemia is related with the development and progression of diabetes vascular complications, which resulted in shortened life expectancy and decreased quality of life in DM patients. Endothelium dysfunction is a crucial pathophysiological factor in diabetic vasculopathy. Several studies demonstrated that pathological accumulation of extracellular matrix (ECM) proteins could induce endothelial cell fibrosis and eventually cause endothelium dysfunction. The diabetic vasculopathy process was associated with elevated advanced glycation end-products (AGEs) presence cause diabetic vascular complications. Previous studies indicated that AGEs could induce fibrosis in several types of cells. However, there was no evidence that AGEs can induce fibrosis in pancreatic islet endothelial cells. Moreover, the endothelial-to-mesenchymal transition (EndoMT) is regarded as the functional regulator of vascular endothelium. Therefore, in this study, we investigated the role of advanced glycation end-products-induced endothelial-mesenchymal transition in diabetes-related islet fibrosis. We found that the immunoreactivities for AGEs and α-SMA expressions were markedly increased in the pancreatic islet of diabetic mice compared with the control group. The protein expression of E-cadherin and CD31 was significantly decreased, but Vimentin, α-SMA and CTGF were significantly increased by AGEs (50 μg/ml) treatment for 48h. Moreover, AGE induced the elevated protein expression of the fibrosis marker, fibronectin. On the other hand, AGEs (50μg/ml) increased receptor of AGEs (RAGE) protein expression. AGEs up-regulated phosphorylation of Akt, p-38, smad2/3 and NF-κB, and down regulated BMP7 and p-smad1/5/9 expression. Furthermore, RAGE neutralized antibody or alagebrium chloride (Ala-Cl), a AGEs cross-link breaker, could alleviate the AGEs-induced EndoMT in MS1 cells. Taken together, this study was the first to demonstrat for the first time that AGEs induce the production of EndoMT markers expression significantly, such as CTGF, vimentin, α-SMA, fibronectin, and suppress E-cadherin expression in pancreatic islet endothelial cells via RAGE-regulated p38MAPK/smad2/3, Akt/NF-κB and BMP7/ smad1/5/9 signaling pathway.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:43:33Z (GMT). No. of bitstreams: 1
ntu-105-R03447006-1.pdf: 9920474 bytes, checksum: 3c8e45c6fdfb5d26025702d356a133c0 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 i
誌謝 iv
中文摘要 vi
Abstract viii
Abbreviations x
CHAPTER I Introduction 1
1 Diabetes mellitus 1
2 Diabetic vascular complications 3
3 Fibrotic disorders 5
4 Endothelial-to-mesenchymal transition, EndoMT 6
5 Advanced glycation end-products (AGEs) 11
6 Aim 15
CHAPTER II Materials and Methods 17
1. Reagents and Antibodies 17
2. Preparation of AGEs 17
3. Streptozotocin-diabetic mouse model and aminoguanidine treatment 18
4. Db/db mouse model 19
5. Histological assessments 19
6. MS1 Cell Cultures 20
7. Measurement of Cell viability 21
8. Preparation of Total Call Lysates 21
9. Western Blotting Analysis 21
10. Statistical Analysis 22
CHAPERT III Results 23
1. AGEs influenced the progression of diabetes 23
2. AGEs induced pancreatic islet endothelial cells fibrosis in type 1 and type 2 diabetic mice 24
3. AGEs induce pancreatic islet endothelial cells fibrosis in diabetic mice 25
4. AGEs reduced MS1 cell viability 26
5. AGEs induced fibrosis in MS1 cells 26
6. AGEs induced endothelial-mesenchymal transition in MS1 cells 26
7. AGEs induced EndoMT in MS1 cell via receptor for AGEs (RAGE). 27
8. Exposure to AGEs would influence the protein expression of Akt and p-65-NFκB in MS1 cells 28
9. The inhibitor of AKT (MK-2206) could alleviate AGEs-induced endothelial-mesenchymal transition in MS1 cell. 29
10. AGEs would influence the protein expression of p-38, Smad2/3, BMP7, Smad1/5/9, and not BMP2 in MS1 cells 29
11. Alagebrium chloride (Ala-Cl) inhibits the AGEs-induced fibrosis in MS1 cells 30
CHAPTER IV Discussion 31
CHAPTER V Conclusion 35
Figures 37
[Figure 1.] 37
[Figure 2.] 39
[Figure 3.] 41
[Figure 4.] 42
[Figure 5.] 43
[Figure 6.] 44
[Figure 7.] 45
[Figure 8.] 46
[Figure 9.] 47
[Figure 10.] 48
[Figure 11.] 49
[Figure 12.] 50
[Figure 13.] 51
[Figure 14.] 53
Reference 54
dc.language.isoen
dc.subject糖尿病血管併發症zh_TW
dc.subject內皮-間質轉換zh_TW
dc.subject糖化終產物zh_TW
dc.subject內皮細胞zh_TW
dc.subject纖維化zh_TW
dc.subjectendothelial-to-mesenchymal transitionen
dc.subjectfibrosisen
dc.subjectadvanced glycation end-productsen
dc.subjectendothelial cellen
dc.subjectdiabetes vascular complicationsen
dc.title探討糖化終產物誘導之內皮-間質轉換在糖尿病相關胰島纖維化之角色zh_TW
dc.titleThe role of advanced glycation end-products-induced endothelial-mesenchymal transition in diabetes-related islet fibrosisen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee姜至剛(Chih-Kang Chiang),楊榮森(Rong-Sen Yang),許美玲
dc.subject.keyword糖尿病血管併發症,內皮細胞,糖化終產物,內皮-間質轉換,纖維化,zh_TW
dc.subject.keyworddiabetes vascular complications,endothelial cell,advanced glycation end-products,endothelial-to-mesenchymal transition,fibrosis,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201602528
dc.rights.note有償授權
dc.date.accepted2016-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
Appears in Collections:毒理學研究所

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
9.69 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved