Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49707
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李建國
dc.contributor.authorChing-Yu Luen
dc.contributor.author呂京育zh_TW
dc.date.accessioned2021-06-15T11:43:15Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-15
dc.identifier.citationBanchereau, J., and Steinman, R.M. (1998). Dendritic cells and the control of immunity. Nature 392, 245-252.
Biacchesi, S., LeBerre, M., Lamoureux, A., Louise, Y., Lauret, E., Boudinot, P., and Bremont, M. (2009). Mitochondrial antiviral signaling protein plays a major role in induction of the fish innate immune response against RNA and DNA viruses. Journal of virology 83, 7815-7827.
Chen, G.Y., Tang, J., Zheng, P., and Liu, Y. (2009). CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science (New York, NY) 323, 1722-1725.
Chen, Y.L., Chen, T.T., Pai, L.M., Wesoly, J., Bluyssen, H.A., and Lee, C.K. (2013). A type I IFN-Flt3 ligand axis augments plasmacytoid dendritic cell development from common lymphoid progenitors. The Journal of experimental medicine 210, 2515-2522.
Colonna, M., Trinchieri, G., and Liu, Y.J. (2004). Plasmacytoid dendritic cells in immunity. Nature immunology 5, 1219-1226.
Durbin, J.E., Hackenmiller, R., Simon, M.C., and Levy, D.E. (1996). Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443-450.
Edelson, B.T., Kc, W., Juang, R., Kohyama, M., Benoit, L.A., Klekotka, P.A., Moon, C., Albring, J.C., Ise, W., Michael, D.G., et al. (2010). Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. The Journal of experimental medicine 207, 823-836.
elz, G.T., and Nutt, S.L. (2012). Transcriptional programming of the dendritic cell network. Nature reviews Immunology 12, 101-113.
Esashi, E., Wang, Y.H., Perng, O., Qin, X.F., Liu, Y.J., and Watowich, S.S. (2008). The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8. Immunity 28, 509-520.
Gilliet, M., Cao, W., and Liu, Y.-J. (2008). Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nature reviews Immunology 8, 594-606.
Glatman Zaretsky, A., Engiles, J.B., and Hunter, C.A. (2014). Infection-induced changes in hematopoiesis. Journal of immunology 192, 27-33.
Hermesh, T., Moltedo, B., Moran, T.M., and Lopez, C.B. (2010). Antiviral instruction of bone marrow leukocytes during respiratory viral infections. Cell host & microbe 7, 343-353.
Ichii, M., Shimazu, T., Welner, R.S., Garrett, K.P., Zhang, Q., Esplin, B.L., and Kincade, P.W. (2010). Functional diversity of stem and progenitor cells with B-lymphopoietic potential. Immunological reviews 237, 10-21.
Ichinohe, T., Pang, I.K., and Iwasaki, A. (2010). Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nature immunology 11, 404-410.
Iwasaki, A., and Pillai, P.S. (2014). Innate immunity to influenza virus infection. Nature reviews Immunology 14, 315-328.
Jackson, J.T., Hu, Y., Liu, R., Masson, F., D'Amico, A., Carotta, S., Xin, A., Camilleri, M.J., Mount, A.M., Kallies, A., et al. (2011). Id2 expression delineates differential checkpoints in the genetic program of CD8alpha+ and CD103+ dendritic cell lineages. The EMBO journal 30, 2690-2704.
Johnson, L.M., and Scott, P. (2007). STAT1 expression in dendritic cells, but not T cells, is required for immunity to Leishmania major. Journal of immunology 178, 7259-7266.
Karsunky, H., Merad, M., Cozzio, A., Weissman, I.L., and Manz, M.G. (2003). Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. The Journal of experimental medicine 198, 305-313.
Kato, H., Sato, S., Yoneyama, M., Yamamoto, M., Uematsu, S., Matsui, K., Tsujimura, T., Takeda, K., Fujita, T., Takeuchi, O., et al. (2005). Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19-28.
King, K.Y., and Goodell, M.A. (2011). Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nature reviews Immunology 11, 685-692.
Lambrecht, B.N., and Hammad, H. (2012). Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annual review of immunology 30, 243-270.
Lewis, K.L., Caton, M.L., Bogunovic, M., Greter, M., Grajkowska, L.T., Ng, D., Klinakis, A., Charo, I.F., Jung, S., Gommerman, J.L., et al. (2011). Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780-791.
Li, H.S., Gelbard, A., Martinez, G.J., Esashi, E., Zhang, H., Nguyen-Jackson, H., Liu, Y.J., Overwijk, W.W., and Watowich, S.S. (2011). Cell-intrinsic role for IFN-alpha-STAT1 signals in regulating murine Peyer patch plasmacytoid dendritic cells and conditioning an inflammatory response. Blood 118, 3879-3889.
Li, H.S., and Watowich, S.S. (2014). Innate immune regulation by STAT-mediated transcriptional mechanisms. Immunological reviews 261, 84-101.
Li, H.S., Yang, C.Y., Nallaparaju, K.C., Zhang, H., Liu, Y.J., Goldrath, A.W., and Watowich, S.S. (2012). The signal transducers STAT5 and STAT3 control expression of Id2 and E2-2 during dendritic cell development. Blood 120, 4363-4373.
Liu, K., Waskow, C., Liu, X., Yao, K., Hoh, J., and Nussenzweig, M. (2007). Origin of dendritic cells in peripheral lymphoid organs of mice. Nature immunology 8, 578-583.
Luu, K., Greenhill, C.J., Majoros, A., Decker, T., Jenkins, B.J., and Mansell, A. (2014). STAT1 plays a role in TLR signal transduction and inflammatory responses. Immunology and cell biology 92, 761-769.
Manz, M.G., and Boettcher, S. (2014). Emergency granulopoiesis. Nature reviews Immunology 14, 302-314.
Massberg, S., Schaerli, P., Knezevic-Maramica, I., Kollnberger, M., Tubo, N., Moseman, E.A., Huff, I.V., Junt, T., Wagers, A.J., Mazo, I.B., et al. (2007). Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131, 994-1008.
Mazo, I.B., Massberg, S., and von Andrian, U.H. (2011). Hematopoietic stem and progenitor cell trafficking. Trends in immunology 32, 493-503.
Megias, J., Yanez, A., Moriano, S., O'Connor, J.E., Gozalbo, D., and Gil, M.L. (2012). Direct Toll-like receptor-mediated stimulation of hematopoietic stem and progenitor cells occurs in vivo and promotes differentiation toward macrophages. Stem cells (Dayton, Ohio) 30, 1486-1495.
Merad, M., Sathe, P., Helft, J., Miller, J., and Mortha, A. (2013). The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annual review of immunology 31, 563-604.
Mildner, A., and Jung, S. (2014). Development and function of dendritic cell subsets. Immunity 40, 642-656.
Miloud, T., Fiegler, N., Suffner, J., Hammerling, G.J., and Garbi, N. (2012). Organ-specific cellular requirements for in vivo dendritic cell generation. Journal of immunology 188, 1125-1135.
Nagai, Y., Garrett, K.P., Ohta, S., Bahrun, U., Kouro, T., Akira, S., Takatsu, K., and Kincade, P.W. (2006). Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24, 801-812.
Naik, S.H., Proietto, A.I., Wilson, N.S., Dakic, A., Schnorrer, P., Fuchsberger, M., Lahoud, M.H., O'Keeffe, M., Shao, Q.X., Chen, W.F., et al. (2005). Cutting edge: generation of splenic CD8+ and CD8- dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. Journal of immunology 174, 6592-6597.
O'Neill, L.A., Golenbock, D., and Bowie, A.G. (2013). The history of Toll-like receptors - redefining innate immunity. Nature reviews Immunology 13, 453-460.
Onai, N., Obata-Onai, A., Schmid, M.A., Ohteki, T., Jarrossay, D., and Manz, M.G. (2007). Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nature immunology 8, 1207-1216.
Ouaaz, F., Arron, J., Zheng, Y., Choi, Y., and Beg, A.A. (2002). Dendritic Cell Development and Survival Require Distinct NF-κB Subunits. Immunity 16, 257-270.
Pang, I.K., Pillai, P.S., and Iwasaki, A. (2013). Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I. Proceedings of the National Academy of Sciences of the United States of America 110, 13910-13915.
Peinado, H., Aleckovic, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., Hergueta-Redondo, M., Williams, C., Garcia-Santos, G., Ghajar, C., et al. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature medicine 18, 883-891.
Pillai, P.S., Molony, R.D., Martinod, K., Dong, H., Pang, I.K., Tal, M.C., Solis, A.G., Bielecki, P., Mohanty, S., Trentalange, M., et al. (2016). Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science (New York, NY) 352, 463-466.
Puttur, F., Arnold-Schrauf, C., Lahl, K., Solmaz, G., Lindenberg, M., Mayer, C.T., Gohmert, M., Swallow, M., van Helt, C., Schmitt, H., et al. (2013). Absence of Siglec-H in MCMV infection elevates interferon alpha production but does not enhance viral clearance. PLoS pathogens 9, e1003648.
Ramakrishnaiah, V., Thumann, C., Fofana, I., Habersetzer, F., Pan, Q., de Ruiter, P.E., Willemsen, R., Demmers, J.A., Stalin Raj, V., Jenster, G., et al. (2013). Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proceedings of the National Academy of Sciences of the United States of America 110, 13109-13113.
Ramsauer, K., Sadzak, I., Porras, A., Pilz, A., Nebreda, A.R., Decker, T., and Kovarik, P. (2002). p38 MAPK enhances STAT1-dependent transcription independently of Ser-727 phosphorylation. Proceedings of the National Academy of Sciences of the United States of America 99, 12859-12864.
Redecke, V., Wu, R., Zhou, J., Finkelstein, D., Chaturvedi, V., High, A.A., and Hacker, H. (2013). Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nature methods 10, 795-803.
Rehwinkel, J., Tan, C.P., Goubau, D., Schulz, O., Pichlmair, A., Bier, K., Robb, N., Vreede, F., Barclay, W., Fodor, E., et al. (2010). RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140, 397-408.
Sathe, P., Vremec, D., Wu, L., Corcoran, L., and Shortman, K. (2013). Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells. Blood 121, 11-19.
Schmid, M.A., Takizawa, H., Baumjohann, D.R., Saito, Y., and Manz, M.G. (2011). Bone marrow dendritic cell progenitors sense pathogens via Toll-like receptors and subsequently migrate to inflamed lymph nodes. Blood 118, 4829-4840.
Schmitt, H., Sell, S., Koch, J., Seefried, M., Sonnewald, S., Daniel, C., Winkler, T.H., and Nitschke, L. (2016). Siglec-H protects from virus-triggered severe systemic autoimmunity. The Journal of experimental medicine.
Schorey, J.S., Cheng, Y., Singh, P.P., and Smith, V.L. (2015). Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO reports 16, 24-43.
Schroder, K., Spille, M., Pilz, A., Lattin, J., Bode, K.A., Irvine, K.M., Burrows, A.D., Ravasi, T., Weighardt, H., Stacey, K.J., et al. (2007). Differential effects of CpG DNA on IFN-beta induction and STAT1 activation in murine macrophages versus dendritic cells: alternatively activated STAT1 negatively regulates TLR signaling in macrophages. Journal of immunology 179, 3495-3503.
Schurch, C.M., Riether, C., and Ochsenbein, A.F. (2014). Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell stem cell 14, 460-472.
Segura, E., and Amigorena, S. (2013). Inflammatory dendritic cells in mice and humans. Trends in immunology 34, 440-445.
Shortman, K., and Naik, S.H. (2007). Steady-state and inflammatory dendritic-cell development. Nature reviews Immunology 7, 19-30.
Song, G., Ouyang, G., and Bao, S. (2005). The activation of Akt/PKB signaling pathway and cell survival. Journal of cellular and molecular medicine 9, 59-71.
Stark, G.R., and Darnell, J.E., Jr. (2012). The JAK-STAT pathway at twenty. Immunity 36, 503-514.
Steinman, R.M., and Cohn, Z.A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. The Journal of experimental medicine 137, 1142-1162.
Steinman, R.M., Kaplan, G., Witmer, M.D., and Cohn, Z.A. (1979). Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro. The Journal of experimental medicine 149, 1-16.
Swiecki, M., and Colonna, M. (2015). The multifaceted biology of plasmacytoid dendritic cells. Nature reviews Immunology 15, 471-485.
Swiecki, M., Wang, Y., Vermi, W., Gilfillan, S., Schreiber, R.D., and Colonna, M. (2011). Type I interferon negatively controls plasmacytoid dendritic cell numbers in vivo. The Journal of experimental medicine 208, 2367-2374.
Takizawa, H., Boettcher, S., and Manz, M.G. (2012). Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119, 2991-3002.
Tan, C.S., Dezube, B.J., Bhargava, P., Autissier, P., Wuthrich, C., Miller, J., and Koralnik, I.J. (2009). Detection of JC virus DNA and proteins in the bone marrow of HIV-positive and HIV-negative patients: implications for viral latency and neurotropic transformation. The Journal of infectious diseases 199, 881-888.
Taubenberger, J.K., and Morens, D.M. (2010). Influenza: The Once and Future Pandemic. Public Health Reports 125, 16-26.
van de Laar, L., Buitenhuis, M., Wensveen, F.M., Janssen, H.L., Coffer, P.J., and Woltman, A.M. (2010). Human CD34-derived myeloid dendritic cell development requires intact phosphatidylinositol 3-kinase-protein kinase B-mammalian target of rapamycin signaling. Journal of immunology 184, 6600-6611.
van de Laar, L., Coffer, P.J., and Woltman, A.M. (2012). Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 119, 3383-3393.
Waskow, C., Liu, K., Darrasse-Jeze, G., Guermonprez, P., Ginhoux, F., Merad, M., Shengelia, T., Yao, K., and Nussenzweig, M. (2008). The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nature immunology 9, 676-683.
Welner, R.S., Pelayo, R., Nagai, Y., Garrett, K.P., Wuest, T.R., Carr, D.J., Borghesi, L.A., Farrar, M.A., and Kincade, P.W. (2008). Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood 112, 3753-3761.
Wilson, N.S., Young, L.J., Kupresanin, F., Naik, S.H., Vremec, D., Heath, W.R., Akira, S., Shortman, K., Boyle, J., Maraskovsky, E., et al. (2008). Normal proportion and expression of maturation markers in migratory dendritic cells in the absence of germs or Toll-like receptor signaling. Immunology and cell biology 86, 200-205.
Xu, Y., Zhan, Y., Lew, A.M., Naik, S.H., and Kershaw, M.H. (2007). Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. Journal of immunology 179, 7577-7584.
Yoneyama, M., Onomoto, K., Jogi, M., Akaboshi, T., and Fujita, T. (2015). Viral RNA detection by RIG-I-like receptors. Current opinion in immunology 32, 48-53.
Zhao, J.L., Ma, C., O'Connell, R.M., Mehta, A., DiLoreto, R., Heath, J.R., and Baltimore, D. (2014). Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell stem cell 14, 445-459.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49707-
dc.description.abstract樹突狀細胞(Dendritic cell, DC)對先天性及後天性免疫的調控反應都很重要。樹突狀細胞主要分為漿狀樹突細胞(plasmacytoid DC, pDC)及傳統樹突細胞 (conventional DC, cDC),兩者的生命週期都很短。因此,它們需要持續地從骨髓系統及淋巴系統的造血前驅細胞更新補充。我們先前的研究指出在穩定狀態下, Flt3配體(Flt3 ligand, FL)主要是促進共同淋巴前驅細胞(common lymphoid progenitors, CLP)分化成pDC而不是cDC。CLP會表現不同的類鐸受體 (Toll-like receptor, TLR)包含TLR7及TLR9,因此在發炎及感染的情況下, 從CLP分化成DC的調控過程仍然不是十分清楚。在這裡我們的實驗證據顯示,經過TLR7和TLR9配體R848及CpG分別刺激後,從CLP生成的pDC會大幅減少,相反的cDC的產生則會增加。除此之外,經過TLR刺激,cDC的亞群會從偏向生成CD24+cDC轉變成CD24-cDC。這樣的現象主要是經由TLR訊息傳導途徑的直接調控,另外有一部分則是間接受到TLR下游分子,像是第一型干擾素(type I interferon, IFN) 的影響。有趣的是,TLR及第一型干擾素下游訊息傳遞蛋白分子STAT1是促進cDC生成不可缺少的因子。然而第一型干擾素也有參與TLR刺激造成的cDC的增加。流行性感冒病毒在體外感染CLP後也和類鐸受體的刺激有類似的反應;也會造成cDC生成的增加及pDC生成的減少。流感病毒可以被不同的模式辨識受體 (pattern recognition receptor, PRR)辨認包含TLR7、RIG-I及NLRP3,但是沒有任何一個單獨的受體會造成這樣的改變。此外,不管是STAT1還是第一型干擾素也都不會影響流感病毒對DC分化的作用,因此調控TLR及流感病毒感染的分子機制差異性非常大。為了進一步了解DC發育的分子訊息調控的研究,我們使用造血前驅及幹細胞的細胞株 (immortalized hematopoietic stem and progenitor cell line, iHSPC)。iHSPC中的AKT及STAT3的活化都會因為FL加R848的刺激比只加FL的組別增加。此外,Stat3及Akt3 (AKT的一種異構物)在iHSPC中基因靜默表現(knockdown)後,cDC生成提高但是pDC生成卻減少了,表示STAT3及AKT3會正向調控pDC的發育。總結來說,我們發現發炎以及感染會改變CLP發育成pDC及cDC的平衡,從原本偏向生成pDC變成偏向生成cDC。這結果也暗示DC的發育是非常多變的,而且會受到環境因子的影響。zh_TW
dc.description.abstractDendritic cells (DCs) are critical for the innate and the adaptive immunity. DCs, including plasmacytoid DCs (pDCs) and conventional DC (cDCs) are short-lived. Therefore, they are constantly replenished from progenitor cells of myeloid and lymphoid lineages. We have previously shown that Flt3 ligand (FL) predominantly promotes the development of pDC, and not cDC, from common lymphoid progenitors (CLPs) during steady-state. While CLPs express various TLRs, including TLR7 and TLR9, DC development from CLPs during inflammation and infection is still incompletely understood. Here, we showed that, R848 and CpG, a TLR7 and TLR9 ligand, respectively, promoted cDC production while decreased pDC generation from CLPs. Moreover, development of cDC subsets was also shifted from CD24+cDC to CD24-cDC following the TLR stimulation. The effect mainly depended on direct TLR signaling pathway and, in part, on indirect downstream molecules of TLR, such as type I interferon (IFN). Interestingly, STAT1, a direct signals of TLR and type I IFN, was indispensable for TLR-mediated enhancement of cDC development. However, type I IFN contributed partially to the TLR-mediated enhancement of cDC production. Infection of influenza virus (IAV) in vitro also resulted in increased production of cDCs but reduced generation of pDCs. While several PRRs, including TLR7, RIG-I and NLRP3, have been shown to sense pathogen-associated molecular patterns of IAV, none of the individual molecule was involved. Moreover, neither STAT1 nor type I IFN was dispensable for the phenotype, suggesting that the molecular mechanisms for TLR- and IAV infection-mediated are distinct. To facilitate the study of the signaling molecules dictate the programming of DC development, an immortalized hematopoietic stem and progenitor cell line (iHSPC) was used. Activation of AKT and STAT3 was enhanced upon FL plus R848 stimulation as compared to FL alone in iHSPC. Knockdown of Stat3 or Akt3, a isoform of AKT, in iHSPC enhanced cDC development but inhibited pDC development, suggesting that STAT3 and AKT3 may positively regulate pDC development. In conclusion, we demonstrate that inflammation and infection reprogram DC homeostasis from CLPs by shifting pro pDC to pro cDC development. Therefore, DC development is highly dynamic, depending on environmental cues.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:43:15Z (GMT). No. of bitstreams: 1
ntu-105-R03449002-1.pdf: 1530234 bytes, checksum: 482df7bd0c82ae377d09f58d9fabc552 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書
誌謝………………….…………………………….………............i
中文摘要………………….…………………………….………....ii-iii
Abstract………………….…………………………….……….....iv-v
Abbreviation……………………………………………………...vi-vii
Chapter I Introduction……………………………………….… 1-9
1.1 Dendritic cell subsets…………………………………….…………2-3
1.2 Dencritic cell development……………………………….………...4-6
1.3 Hematopoiesis during inflammation and Infection………………...7-9
1.4 Rationale and specific aims…………………………………………9
Chapter II Materials and Methods……………………………...10-20
Chapter III Results………………………….……………………21-39
Chapter IV Discussion…………………………...……………….40-51
Chapter V Figures……………………………..….........................52-89
Figure 1 TLR9 signaling promotes CD24- cDC production from CLP………..53-54
Figure 2 TLR7 signaling promotes CD24- cDC production from CLPs……….55-56
Figure 3 TLR7 signaling-mediated enhancement cDC production from CLPs is partially Myd88-dependent……………………………………………………...57-58
Figure 4 TLR7 signaling-mediated enhancement of pDC production from CLP is partially NF-kB dependent………………………………………………………..59-60
Figure 5 TLR signaling-mediated enhancement of cDC production from CLPs is STAT1-dependent………………………………………………………….….….61-62
Figure 6 TLR signaling-mediated enhancement of cDC development from CLPs is STAT3-dependent………………………………………………………….…….63-64
Figure 7 STAT3 does not regulate DC development from LF cells……………..65-66
Figure 8 TLR signaling-mediated enhancement of cDC production is type I IFN signaling-dependent………………………………………………………………67-69
Figure 9 IAV infection promotes cDC production, downregulates Siglec-H expression and reprograms transcription factor expression in vitro………………………….70-71
Figure 10 Infection-induced enhancement of cDC production is TLR-independent
………………………………………………………………………………….....72
Figure 11 Infection-induced enhancement of cDC development from CLPs is RLR-independent………………………………………………………………….……73-75
Figure 12 Infection-induced enhancement of cDC development from CLPs is NLRP3-independent……………………………………………………………………..…76
Figure 13 Infection-induced enhancement of cDC development from CLPs is STAT1-independent………………………………………………………………………...77
Figure 14 Influenza virus (IAV) infection promotes cDC differentiation from CLPs
…………………………………………………………………………………78-81
Figure 15 Type I IFN signaling downregulates Siglec-H expression during inflammation and infection from CLPs………………………………………..82-83
Figure 16 TLR stimulation promotes cDC differentiation from iHSPC……….84
Figure 17 TLR stimulation enhances activation of Akt and STAT3 in iHSPC...85
Figure 18 knockdown of Stat3 negatively regulates TLR-mediated enhancement of cDC production…………………………………………………………………86-87
Figure 19 knockdown of Akt3 does not regulate TLR-mediated enhancement of cDC production………………………………………………………………….……88-89
Chapter VI References….…………………………………..….....90-102
dc.language.isoen
dc.subject樹突細胞zh_TW
dc.subject感染zh_TW
dc.subject發育zh_TW
dc.subject發炎zh_TW
dc.subjectinflammationen
dc.subjectinfectionen
dc.subjectdevelopmenten
dc.subjectdendritic cellen
dc.title發炎反應以及感染對樹突細胞從共同淋巴前驅細胞發育之調控zh_TW
dc.titleInflammation- and Infection-mediated Modulation of Dendritic Cell Development from Common Lymphoid Progenitorsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee嚴仲陽,朱清良
dc.subject.keyword樹突細胞,發育,發炎,感染,zh_TW
dc.subject.keyworddendritic cell,development,inflammation,infection,en
dc.relation.page101
dc.identifier.doi10.6342/NTU201602565
dc.rights.note有償授權
dc.date.accepted2016-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved