請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49696
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃義侑 | |
dc.contributor.author | Jeng-Shiang Tsai | en |
dc.contributor.author | 蔡政翔 | zh_TW |
dc.date.accessioned | 2021-06-15T11:42:33Z | - |
dc.date.available | 2018-08-24 | |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-15 | |
dc.identifier.citation | 參考文獻
1. Kambayashi, T., Laufer, T. M., Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol, 2014. 14(11): p. 719-730. 2. Mathew, E.c., Antigen presenting cell. Uptodate, 2015. 3. Hafner, A.M., Corthesy, B., Merkle, H. P., Particulate formulations for the delivery of poly(I:C) as vaccine adjuvant. Adv Drug Deliv Rev, 2013. 65(10): p. 1386-1399. 4. Ardavin, C., Origin, precursors and differentiation of mouse dendritic cells. Nat Rev Immunol, 2003. 3(7): p. 582-590. 5. Young-Jun, L., Dendritic Cell Subsets and Lineages, and Their Functions in Innate and Adaptive Immunity. Cell press, 2001. 106(3): p. 259- 262. 6. T. Doan, R.M., S. Viselli, C. Waltenbaugh, Immunology. 2008. 7. Nellimarla, S. and K.L. Mossman, Extracellular dsRNA: its function and mechanism of cellular uptake. J Interferon Cytokine Res, 2014. 34(6): p. 419-26. 8. Johnston, R.B., an overview of the innate immune system. Uptodate, 2014. 9. Takeuchi, O., Akira, S., Pattern recognition receptors and inflammation. Cell, 2010. 140(6): p. 805-820. 10. J.K Thomas, A.G.R., A.O Barbara, Kuby immunology 2007. sixth edition. 11. Dewitte, H., et al., Nanoparticle design to induce tumor immunity and challenge the suppressive tumor microenvironment. Nano Today, 2014. 9(6): p. 743-758. 12. Takeda, K. and S. Akira, Toll-like receptors in innate immunity. Int Immunol, 2005. 17(1): p. 1-14. 13. Henry, R.J., et al., For whom the endocannabinoid tolls: Modulation of innate immune function and implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry, 2016. 64: p. 167-80. 14. Rietschel ET, K.T., Schade FU, Mamat U, Schmidt G, Loppnow H, Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J., 1994. 8 (2): p. 217-225. 15. Kushwah, R. and J. Hu, Dendritic cell apoptosis: regulation of tolerance versus immunity. J Immunol, 2010. 185(2): p. 795-802. 16. Schroder, M., Bowie, A. G., TLR3 in antiviral immunity: key player or bystander? Trends Immunol, 2005. 26(9): p. 462-468. 17. Fang, R.H., A.V. Kroll, and L. Zhang, Nanoparticle-Based Manipulation of Antigen-Presenting Cells for Cancer Immunotherapy. Small, 2015. 11(41): p. 5483-96. 18. Kun Shao, et al., Nanoparticle-Based Immunotherapy for Cancer. ACS NANO, 2015. 9(1): p. 16-30. 19. Molino, N.M., et al., Viral-mimicking protein nanoparticle vaccine for eliciting anti-tumor responses. Biomaterials, 2016. 86: p. 83-91. 20. Jana, S.C., C. Nandi, S. Deb, J. K., RNA interference: potential therapeutic targets. Appl Microbiol Biotechnol, 2004. 65(6): p. 649-657. 21. Martins, K.A., S. Bavari, and A.M. Salazar, Vaccine adjuvant uses of poly-IC and derivatives. Expert Rev Vaccines, 2015. 14(3): p. 447-59. 22. Hafner, A.M., Corthesy, B., Textor, M., Merkle, H. P., Tuning the immune response of dendritic cells to surface-assembled poly(I:C) on microspheres through synergistic interactions between phagocytic and TLR3 signaling. Biomaterials, 2011. 32(10): p. 2651-2661. 23. Jin, B., et al., Immunomodulatory effects of dsRNA and its potential as vaccine adjuvant. J Biomed Biotechnol, 2010. 2010: p. 690438. 24. Tanabe., M., Mechanism of up-regulation of human Toll-like receptor 3 secondary to infection of measles virus-attenuated strains. Biochemical and Biophysical Research Communications, 2003. 311: p. 39-48. 25. Cheng, Y.-s. and F. Xu, Anticancer function of polyinosinic-polycytidylic acid. Cancer Biology & Therapy, 2014. 10(12): p. 1219-1223. 26. Farin, H.F., Karthaus, W. R., Kujala, P., Rakhshandehroo, M., Schwank, G., Vries, R. G., Kalkhoven, E., Nieuwenhuis, E. E., Clevers, H., Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell-derived IFN-gamma. J Exp Med, 2014. 211(7): p. 1393-1405. 27. Stridh, L., Mottahedin, A., Johansson, M. E., Valdez, R. C., Northington, F., Wang, X., Mallard, C., Toll-like receptor-3 activation increases the vulnerability of the neonatal brain to hypoxia-ischemia. J Neurosci, 2013. 33(29): p. 12041-12051. 28. Riedel, S., Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent), 2005. 18(1): p. 21-25. 29. Robert B. Tesh, J.A., Amelia P.A. Travassos da Rosa,Hilda Guzman,Shu-Yuan Xiao,Thomas P. Monath, Efficacy of Killed Virus Vaccine, Live Attenuated Chimeric Virus Vaccine, and Passive Immunization for Prevention of West Nile virus Encephalitis in Hamster Model. Emerging Infectious Diseases, 2002. 8(12): p. 1392-1397. 30. Tetsutani, K., Ishii, K. J., Adjuvants in influenza vaccines. Vaccine, 2012. 30(52): p. 7658-7661. 31. Marianne Hansson, P.-A.k.N., Stefan Sta˚hl, Design and production of recombinant subunit vaccines. Biotechnol. Appl. Biochem., 2000. 32(2): p. 95-107. 32. JA Wolff, R.M., P Williams, W Chong, G Acsadi, A Jani, PL Felgner, Direct gene transfer into mouse muscle in vivo. Science 1990. 247(4949): p. 1465-1468 33. Devon J. Shedlock, D.B.W., DNA vaccination antigen presentation and the induction of immunity. Journal of Leukocyte Biology, 2000. 68(6): p. 793-806. 34. Bhavsar, M.D., Amiji, M. M., Development of novel biodegradable polymeric nanoparticles-in-microsphere formulation for local plasmid DNA delivery in the gastrointestinal tract. AAPS PharmSciTech, 2008. 9(1): p. 288-294. 35. Sahoo, N., Sahoo, R. K., Biswas, N., Guha, A., Kuotsu, K., Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol, 2015. 81: p. 317-331. 36. S. Moein Moghimi, A.C.H., J. Clifford Murray, Long-circulating and target-specific nanoparticles theory to practice. Pharmacological Reviews, 2001. 53(2): p. 283-318. 37. Maria de la Fuente, N.C., Marcos Garcia-Fuentes Maria Jose Alonso, Nanoparticles as protein and gene carriers to mucosal surfaces. Nanomedicine, 2008. 3(6): p. 845-857. 38. Koshy, S.T. and D.J. Mooney, Biomaterials for enhancing anti-cancer immunity. Curr Opin Biotechnol, 2016. 40: p. 1-8. 39. Ma, W., Chen, M., Kaushal, S., McElroy, M., Zhang, Y., Ozkan, C., Bouvet, M., Kruse, C., Grotjahn, D., Ichim, T., Minev, B., PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Int J Nanomedicine, 2012. 7: p. 1475-1487. 40. Zhou, X., Zhang, X., Yu, X., Zha, X., Fu, Q., Liu, B., Wang, X., Chen, Y., Chen, Y., Shan, Y., Jin, Y., Wu, Y., Liu, J., Kong, W., Shen, J., The effect of conjugation to gold nanoparticles on the ability of low molecular weight chitosan to transfer DNA vaccine. Biomaterials, 2008. 29(1): p. 111-117. 41. Shen, H., Ackerman, A. L., Cody, V., Giodini, A., Hinson, E. R., Cresswell, P., Edelson, R. L., Saltzman, W. M., Hanlon, D. J., Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology, 2006. 117(1): p. 78-88. 42. Zhao, W., Wu, W., Xu, X., Oral vaccination with liposome-encapsulated recombinant fusion peptide of urease B epitope and cholera toxin B subunit affords prophylactic and therapeutic effects against H. pylori infection in BALB/c mice. Vaccine, 2007. 25(44): p. 7664-7673. 43. Gregory, A.E., Titball, R., Williamson, D., Vaccine delivery using nanoparticles. Front Cell Infect Microbiol, 2013. 3: p. 13. 44. Kingsman SM, K.A., Polyvalent recombinant antigens: a new vaccine strategy. . Vaccine, 1988. 6(4): p. 304-306. 45. Roldao, A., Mellado, M. C., Castilho, L. R., Carrondo, M. J., Alves, P. M., Virus-like particles in vaccine development. Expert Rev Vaccines, 2010. 9(10): p. 1149-1176. 46. Zeltins, A., Construction and characterization of virus-like particles: a review. Mol Biotechnol, 2013. 53(1): p. 92-107. 47. Cox JC, S.A., Barr IG., ISCOMs and other saponin based adjuvants. . Adv Drug Deliv Rev, 1998. 32(3): p. 247-271. 48. Robson, N.C., Donachie, A. M., Mowat, A. M., Simultaneous presentation and cross-presentation of immune-stimulating complex-associated cognate antigen by antigen-specific B cells. Eur J Immunol, 2008. 38(5): p. 1238-1246. 49. Magadala, P., Amiji, M., Epidermal growth factor receptor-targeted gelatin-based engineered nanocarriers for DNA delivery and transfection in human pancreatic cancer cells. AAPS J, 2008. 10(4): p. 565-576. 50. Goodsell, A., Zhou, F., Gupta, S., Singh, M., Malyala, P., Kazzaz, J., Greer, C., Legg, H., Tang, T., Zur Megede, J., Srivastava, R., Barnett, S. W., Donnelly, J. J., Luciw, P. A., Polo, J., O'Hagan, D. T., Vajdy, M., Beta7-integrin-independent enhancement of mucosal and systemic anti-HIV antibody responses following combined mucosal and systemic gene delivery. Immunology, 2008. 123(3): p. 378-389. 51. Talsma, S.S., Babensee, J. E., Murthy, N., Williams, I. R., Development and in vitro validation of a targeted delivery vehicle for DNA vaccines. J Control Release, 2006. 112(2): p. 271-279. 52. Brito, L.A., O'Hagan, D. T., Designing and building the next generation of improved vaccine adjuvants. J Control Release, 2014. 190: p. 563-579. 53. Norman W. Baylor, W.E., Paul Richman, Aluminum salts in vaccines--US perspective. Vaccine, 2002. 20: p. s18-s23. 54. Ghimire, T.R., Benson, R. A., Garside, P., Brewer, J. M., Alum increases antigen uptake, reduces antigen degradation and sustains antigen presentation by DCs in vitro. Immunol Lett, 2012. 147(1-2): p. 55-62. 55. H Y Qin, M.W.S., C Hitchon, J Lauzon, B Singh, Complete Freund's adjuvant-induced T cells prevent the development and adoptive transfer of diabetes in nonobese diabetic mice. The Journal of Immunology, 1993. 150(5): p. 2072-2080. 56. Amanda L. Gavin, K.H., Bao Duong, Takayuki Ota, Christopher Martin, Bruce Beutler, David Nemazee, Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science, 2006. 314(5807): p. 1936-1938. 57. Beutler, B., Inferences, questions and possibilities in Toll-like receptor signalling. Nature, 2004. 430: p. 257-263. 58. Petrizzo, A., Conte, C., Tagliamonte, M., Napolitano, M., Bifulco, K., Carriero, V., De Stradis, A., Tornesello, M. L., Buonaguro, F. M., Quaglia, F., Buonaguro, L., Functional characterization of biodegradable nanoparticles as antigen delivery system. J Exp Clin Cancer Res, 2015. 34(1): p. 114. 59. Elzoghby, A.O., Gelatin based nanoparticles as drug and gene delivery systems Reviewing three decades of research. Journal of Controlled Release, 2013. 172: p. 1075-1091. 60. Klaus Zwiorek, J.K., Ernst Wagner, Conrad Coester, Gelatin nanoparticles as a new and simple gene delivery system. J Pharm Pharmaceut Sci 7(4):22-28, 2004, 2004. 7(4): p. 22-28. 61. Samal, S.K., Dash, M., Van Vlierberghe, S., Kaplan, D. L., Chiellini, E., van Blitterswijk, C., Moroni, L., Dubruel, P., Cationic polymers and their therapeutic potential. Chem Soc Rev, 2012. 41(21): p. 7147-7194. 62. HIGHBBRGER, J.H., The Isoelectric Point of Collagen. J. Am. Chem. Soc., 1939. 61(9): p. 2302-2303. 63. O Boussif, F.L.h., M A Zanta, A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo polyethylenimine. Proc. Natl. Acad. Sci. USA, 1995. 92: p. 7297-7301. 64. Vala Kafil, Y.O., Cytotoxic Impacts of Linear and Branched Polyethylenimine Nanostructures in A431 Cells. Bioimpacts, 2011. 1(1): p. 23-30. 65. Peter R. Berthold, T.S., Peter E. Nielsen, Cellular Delivery and Antisense Effects of Peptide Nucleic Acid Conjugated to Polyethyleneimine via Disulfide Linkers. Bioconjugate Chem, 2010. 21(10): p. 1933-1938. 66. Varkouhi, A.K., Scholte, M., Storm, G., Haisma, H. J., Endosomal escape pathways for delivery of biologicals. J Control Release, 2011. 151(3): p. 220-228. 67. Ann R Klemm, D.Y., John B Lloyd, Effects of Polyethyleneimine on Endocytosis and Lysosome Stability. Biochemical Pharmacology, 1998. 56(1): p. 41-46. 68. Patnaik, S., Gupta, K. C., Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. Expert Opin Drug Deliv, 2013. 10(2): p. 215-228. 69. Dagmar Fischer, A.v.H., Klaus Kunath, Holger Petersen, Youxin Li, Thomas Kissel, Copolymers of Ethylene Imine and N-(2-Hydroxyethyl)-ethylene Imine as Tools To Study Effects of Polymer Structure on Physicochemical and Biological Properties of DNA Complexes. Bioconjugate Chem, 2002. 13: p. 1124-1133. 70. Dagmar Fischera, Y.L., Barbara Ahlemeyerc, Josef Krieglsteinc, Thomas Kissela, In vitro cytotoxicity testing of polycations influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003. 24(7): p. 1121-1131. 71. Seungpyo Hong, P.R.L., Elizabeth K. Janus , Jennifer L. Peters , Mary-Margaret Kober , Mohammad T. Islam , Bradford G. Orr , James R. Baker, Jr. Mark M. Banaszak Holl, Interaction of Polycationic Polymers with Supported Lipid Bilayers and Cells: Nanoscale Hole Formation and Enhanced Membrane Permeability. Bioconjugate Chem, 2006. 17(3): p. 728-734. 72. PubChem-Poly(I_C) _ C19H27N7O16P2. 73. Adrienne V. Li and D.J. Irvine, Generation of Effector Memory T Cell–Based Mucosal and Systemic Immunity with Pulmonary Nanoparticle Vaccination. NANOMEDICINE, 2013. 5(204). 74. Ghaemi, A., et al., Immunomodulatory Effect of Toll-Like Receptor-3 Ligand Poly I:C on Cortical Spreading Depression. Mol Neurobiol, 2016. 53(1): p. 143-54. 75. Schaffert, D., et al., Poly(I:C)-mediated tumor growth suppression in EGF-receptor overexpressing tumors using EGF-polyethylene glycol-linear polyethylenimine as carrier. Pharm Res, 2011. 28(4): p. 731-41. 76. Forte, G., et al., Polyinosinic-polycytidylic acid limits tumor outgrowth in a mouse model of metastatic lung cancer. J Immunol, 2012. 188(11): p. 5357-64. 77. Forghani, P. and E.K. Waller, Poly (I: C) modulates the immunosuppressive activity of myeloid-derived suppressor cells in a murine model of breast cancer. Breast Cancer Res Treat, 2015. 153(1): p. 21-30. 78. Varypataki, E.M., et al., Cationic liposomes loaded with a synthetic long peptide and poly(I:C): a defined adjuvanted vaccine for induction of antigen-specific T cell cytotoxicity. AAPS J, 2015. 17(1): p. 216-26. 79. Sajeesh, S., et al., Long dsRNA-mediated RNA interference and immunostimulation: a targeted delivery approach using polyethyleneimine based nano-carriers. Mol Pharm, 2014. 11(3): p. 872-84. 80. Sharma, R., et al., Polymer nanotechnology based approaches in mucosal vaccine delivery: challenges and opportunities. Biotechnol Adv, 2015. 33(1): p. 64-79. 81. Gill, N., M. Wlodarska, and B.B. Finlay, The future of mucosal immunology: studying an integrated system-wide organ. Nat Immunol, 2010. 11(7): p. 558-60. 82. Yoshikazu Yuki and H. Kiyono, Mucosal vaccines novel advances in technology and delivery. Expert Review of Vaccines, 2009. 8(8): p. 1083-1097. 83. Sandra Chadwicka, C.K., Mansoor Amiji, Delivery strategies to enhance mucosal vaccination. Expert Opinion on Biological Therapy, 2009. 9(4): p. 427-440. 84. Jabbal-Gill, I., Nasal vaccine innovation. J Drug Target, 2010. 18(10): p. 771-86. 85. Xu, Y., P.W. Yuen, and J.K. Lam, Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives. Pharmaceutics, 2014. 6(3): p. 378-415. 86. K Inaba, M.I., N Romani, H Aya, M Deguchi, S Ikehara, S Muramatsu, R M Steinman, Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte macrophage colony stimulating factor. JEM, 1992 176(6): p. 1693-1702. 87. Seiji Naito, et al., Growth and Metastasis of Tumor Cells Isolated from a Human Renal Cell Carcinoma Implanted into Different Organs of Nude Mice. CANCER RESEARCH, 1986. 46: p. 4109-4115. 88. https://www.thermofisher.com/order/catalog/product/22980. 89. Abbas, A.K., A.H. Lichtman, and S. Pillai, Cellular and Molecular Immunology. 2015. 90. Wang, C., et al., Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials, 2016. 79: p. 88-100. 91. Murphy, K.M., Janeway's Immunobiology. 8th 92. Park, H.M., et al., Zoledronic acid induces dose-dependent increase of antigen-specific CD8 T-cell responses in combination with peptide/poly-IC vaccine. Vaccine, 2016. 34(10): p. 1275-81. 93. Takemura, R., et al., PolyI:C-Induced, TLR3/RIP3-Dependent Necroptosis Backs Up Immune Effector-Mediated Tumor Elimination In Vivo. Cancer Immunol Res, 2015. 3(8): p. 902-14. 94. Damo, M., et al., TLR-3 stimulation improves anti-tumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma. Sci Rep, 2015. 5: p. 17622. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49696 | - |
dc.description.abstract | 疫苗自過去的研究以來,一直都是利用活化人體內的免疫系統來治療其疾病以及傳染病…等等,但是從過去到現在,疫苗的給予途徑一直以來都是以打針注射的方式最為常見,但也因為針劑所造成的疼痛以及恐懼,導致疫苗的給予經常會有些阻礙,因此想藉由黏膜的途徑來進行疫苗的給予來有效的改善其缺點。從過去疫苗的製作上也經常會以其活化的效率以及對於接種的本體安全性之間來進行考量,從活毒疫苗、減毒疫苗以及死毒疫苗上,可以確定隨著疫苗上所帶有的病原體本上總量越多以及活性越強,產生的效率理所當然會更好,但也造成了安全上的風險,為了減低其安全上的風險也因此研發出了次單位疫苗以及DNA疫苗,將病原體上帶有的片段或是DNA藉由疫苗的方式帶入體內活化,但同樣隨著劑量越多,也有可能造成注入疫苗的本體基因被過量的劑量產生改變甚至造成基因突變的風險,為了改善其劑量的使用並能達到良好的活化效率,在我的研究中是想利用正電改質後的明膠奈米載體作為傳輸系統,並將其載體攜帶著疫苗上所需要的抗原-卵白蛋白(OVA)以及免疫刺激物-聚肌胞苷酸(Poly(I:C)),最後將製備好的抗原傳輸系統藉由黏膜點鼻的途徑進行給予疫苗並活化其動物體內的免疫系統,並在最後以淋巴癌細胞(表面帶有抗原OVA)為治療目標並觀察其預防腫瘤成長效果!
在本研究中利用明膠奈米載體經過改質後已成功的讓明膠奈米載體在中性的環境下仍然能維持帶有大量的正電,並且找出了適當的參數能有效的將抗原OVA以及免疫刺激物poly(I:C)吸附於載體上,並將其特性(大小、PDI以及電性)維持在我們所需要的範圍內,明膠奈米載體有成功的修飾正電並且成功的吸附抗原及Poly(I:C)並且吸附完後仍帶有正電,並提高特性進行傳遞,將各種吸附完抗原及免疫刺激物的奈米載體,藉由細胞實驗以及動物實驗中得到各種數據,從細胞實驗中,得到了在帶有抗原及免疫刺激物的載體仍能維持電性以及有利於細胞的吞噬,並藉由流式細胞儀得到了經過功能性載體的刺激後,樹突狀細胞表面的CD80&86得到了足夠的活化,並藉由細胞激素的分析看到了隨著poly(I:C)的增加,在經過刺激後的細胞分泌出了IL-6、IL-12以及TNF-α,也隨著吸附量的增加,分泌量也隨之增加。 後續的動物實驗則藉由脾臟細胞的外刺激再次確定其經過活化後的免疫系統經過外來相同抗原是否能達到同樣的分泌反應,並藉由分泌出來各種細胞激素(TH1:IFN-γ;TH2:IL-4、IL-5、IL-6)的量來推斷其免疫系統內活化的方向,並藉由抽取血清以及鼻肺部表面的黏膜液,分析其體內隨著疫苗的刺激後的抗體變化,自以上可以知道隨著抗原搭配奈米載體的增加能有效促進適應性免疫分化往TH2的方向活化;然而在加入免疫刺激物poly(I:C)後能有效的提升其適應性免疫並誘導其分化往TH1的方向成長,並藉由分泌出的細胞激素,已經由文獻證實可以有效促使毒殺型T細胞的分化並藉由此細胞達到毒殺特定細胞的功能,因此藉由腫瘤植入實驗來證明其免疫活化的效果,自結果來看能確定本研究中所使用的帶有抗原及免疫刺激物的奈米載體,一方面能有效的降低其用量並達到良好的抑制腫瘤生長的效果,從此證據可以證明研究中所製備的載體能誘發專一性的抗體免疫反應以及細胞激素的提升以及腫瘤抑制效果且達到提升其專一性免疫的活化! | zh_TW |
dc.description.abstract | In the past, the vaccine has been research to attack the disease. This disease is including about the infectious disease. However, up to now the vaccine administrations are used to inject the vaccine in body. The injection owing to cause the pain, many people don’t want to accept the vaccine injection. Because of this reason, we want to use the mucosal delivery to change the disadvantage of the injection. The history of making vaccine has been used to achieve the goals which are better effective result and the safe. However, Live/attenuated vaccines have the good result but they are not safe for the patient. And the inactivated vaccine has decreased the dosage for the patient safe but it was not effective for curing the disease. We need to find the method which can decrease the dosage and have the better treatment effect. So we can use the delivery system to overcome this aim. The successful vaccine needs three important things including with antigen, delivery system and immune-stimulator.
In this study, the Ovalbumin (OVA) was used to be the antigen model. The positive gelatin nanoparticles were used to be the material of delivery system. And the Poly (I: C) was used to be the immune-stimulator. Poly (I: C) and OVA were exposed on the outer surface of positive gelatin nanoparticles. The particle sizes of each positive gelatin nanoparticle with OVA and Poly (I: C) were controlled to smaller than 500nm. And the absorption of OVA at this particle has up to 95%. We demonstrated the Poly (I:C) and OVA incorporated positive gelatin nanoparticles effectively facilitated antigen uptake by mouse bone-marrow derived dendritic cells (BMDCs) and macrophage in vitro, led to higher expression of maturation markers, including CD80&86, and induced higher production of pro-inflammatory cytokine. In vivo use the C57BL/6 mice and the immunization procedure was repeated 2times at 2 weeks interval. C57BL/6 mice immunized by intranasal with the Poly (I: C) and OVA incorporated positive gelatin nanoparticles produced high levels of OVA-specific IgG antibodies in their serum and secretory-IgA (s-IgA) in nasal wash fluid. Spleen cells from mice receiving the Poly (I: C) and OVA incorporated positive gelatin nanoparticles were re-stimulated with OVA and showed significantly augmented levels of IFN-γ. In addition, intranasal administration of the Poly (I: C) and OVA incorporated positive gelatin nanoparticles resulted in complete protection against EG7 tumor challenge in C57BL/6 mice. Taken together, these results indicate that nasal administration of the Poly (I: C) and OVA incorporated positive gelatin nanoparticles mediates the development of an effective immunity against tumors and might be useful for further clinical anti-tumor application. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:42:33Z (GMT). No. of bitstreams: 1 ntu-105-R03548040-1.pdf: 8512237 bytes, checksum: 996d53bf1b314220ed26d3d10542eeb1 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 致謝……………………………………………………………………………………II
前言 III Abstract V 目錄 VII 圖目錄 X 表目錄 XII 第一章. 序論 1 1.1 免疫系統 1 1.1.1 抗原呈現細胞 2 1.1.2 模式識別受體 5 1.1.3 病原相關分子模式 6 1.2 疫苗 8 1.2.1 疫苗種類 8 1.2.2 抗原傳輸系統 10 1.2.3 免疫刺激物 12 1.3 抗原傳輸系統材料組成 13 1.3.1明膠 14 1.3.2正電荷高分子-聚乙烯亞胺 15 1.3.3聚肌胞苷酸 16 1.4 黏膜傳遞 17 1.5研究目的 18 實驗流程圖 19 第二章. 實驗材料與方法 20 2.1實驗藥品 20 2.2實驗儀器 21 2.3合成吸附卵白蛋白及Poly(I:C)的GPO-Ps 21 2.3.1合成明膠奈米顆粒(GNs) 21 2.3.2合成接螢光明膠奈米顆粒(GNRs) 22 2.3.3合成聚乙烯亞胺明膠奈米顆粒(GNRPs) 22 2.3.4正電明膠奈米顆粒吸附卵白蛋白(OVA) (GPOs) 23 2.3.5帶卵白蛋白的正電明膠奈米顆粒吸附 Poly (I:C) (GPO-P) 23 2.4明膠(GNs)、正電 (GNPs)及吸附免疫刺激物(GNP-OPs)奈米顆粒特性分析 23 2.4.1粒徑分析分析 23 2.4.2表面電位分析 24 2.5抗原呈現細胞免疫活性實驗 24 2.5.1巨噬細胞培養 24 2.5.2樹突狀細胞培養 24 2.5.3吞噬能力分析 25 2.5.4活化能力分析 26 2.5.5細胞激素分泌分析 26 2.6 動物實驗 28 2.6.1脾臟細胞體外刺激之培養液細胞激素含量 28 2.6.2動物體內抗體變化實驗 29 2.6.3腫瘤細胞接種實驗 30 第三章. 實驗結果 31 3.1奈米顆粒性質 31 3.1.1明膠奈米載體性質結果 32 3.1.2正電明膠奈米載體吸附卵白蛋白性質結果 33 3.1.3正電明膠奈米載體吸附卵白蛋白&聚肌胞苷酸性質結果 35 3.2抗原呈現細胞免疫活性實驗數據 35 3.2.1吞噬能力實驗結果 35 3.2.2活化能力實驗結果 35 3.2.3細胞激素分泌分析實驗結果 36 3.3 動物實驗結果 38 3.3.1脾臟細胞體外刺激之培養液細胞激素含量 38 3.3.2動物體內抗體變化實驗 39 3.3.3腫瘤細胞接種實驗結果 39 第四章.結果討論與探討 40 4.1奈米顆粒性質分析 40 4.2抗原呈現細胞免疫活性實驗數據分析 43 4.3 動物實驗數據分析 46 第五章.結論 51 參考文獻 73 | |
dc.language.iso | zh-TW | |
dc.title | 利用正電明膠奈米粒子做為具免疫刺激性抗原載體應用於黏膜抗原傳遞之研究 | zh_TW |
dc.title | Surface assembly of Poly (I:C) on Polyethyleneimine modified Gelatin Nanoparticles as Immunostimulatory Carriers of Antigen for Mucosal Delivery | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃意真,許馨云 | |
dc.subject.keyword | 免疫刺激物,正電明膠奈米載體,抗原傳遞,黏膜免疫,疫苗, | zh_TW |
dc.subject.keyword | Immuno-stimulator,Positive gelatin nanoparticle,Antigen delivery,Mucosal immunity,Vaccine, | en |
dc.relation.page | 83 | |
dc.identifier.doi | 10.6342/NTU201601608 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 8.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。