請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49692完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈麗娟(Li-Jiuan Shen),蕭斐元(Fei-Yuan Hsiao) | |
| dc.contributor.author | Tzu-Lan Huang | en |
| dc.contributor.author | 黄子藍 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:42:19Z | - |
| dc.date.available | 2021-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-15 | |
| dc.identifier.citation | 1. Global report on diabetes. In: Organization WH, ed. Geneva2016.
2. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352:854-65. 3. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352:837-53. 4. Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009;360:129-39. 5. Group AC, Patel A, MacMahon S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560-72. 6. Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 2010;376:419-30. 7. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007;356:2457-71. 8. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013;369:1317-26. 9. White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013;369:1327-35. 10. Green JB, Bethel MA, Armstrong PW, et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2015;373:232-42. 11. System USRD. 2015 USRDS annual data report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20152015. 12. Fowler MJ. Microvascular and Macrovascular Complications of Diabetes. Clinical Diabetes 2008;26:77-82. 13. Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA 1979;241:2035-8. 14. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339:229-34. 15. Juutilainen A, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Type 2 diabetes as a 'coronary heart disease equivalent': an 18-year prospective population-based study in Finnish subjects. Diabetes Care 2005;28:2901-7. 16. Lee CD, Folsom AR, Pankow JS, Brancati FL, Atherosclerosis Risk in Communities Study I. Cardiovascular events in diabetic and nondiabetic adults with or without history of myocardial infarction. Circulation 2004;109:855-60. 17. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 2002;287:2570-81. 18. Gilbert RE, Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet 2015;385:2107-17. 19. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 1974;34:29-34. 20. Aronow WS, Ahn C. Incidence of heart failure in 2,737 older persons with and without diabetes mellitus. Chest 1999;115:867-8. 21. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med 1991;325:293-302. 22. Tarraga-Lopez PJ, Celada-Rodriguez A, Cerdan-Oliver M, et al. A pharmacoeconomic evaluation of statins in the treatment of hypercholesterolaemia in the primary care setting in Spain. Pharmacoeconomics 2005;23:275-87. 23. Adler AI, Stevens RJ, Manley SE, et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 2003;63:225-32. 24. Gargiulo R, Suhail F, Lerma EV. Cardiovascular disease and chronic kidney disease. Dis Mon 2015;61:403-13. 25. de Lusignan S, Chan T, Stevens P, et al. Identifying patients with chronic kidney disease from general practice computer records. Fam Pract 2005;22:234-41. 26. Chronic Kidney Disease Prognosis C, Matsushita K, van der Velde M, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010;375:2073-81. 27. American Diabetes A. 7. Approaches to Glycemic Treatment. Diabetes Care 2016;39 Suppl 1:S52-9. 28. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993;329:977-86. 29. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008;359:1577-89. 30. Hayward RA, Reaven PD, Wiitala WL, et al. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2015;372:2197-206. 31. Zoungas S, Chalmers J, Neal B, et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med 2014;371:1392-406. 32. Nauck M. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab 2016;18:203-16. 33. Koliaki C, Doupis J. Incretin-based therapy: a powerful and promising weapon in the treatment of type 2 diabetes mellitus. Diabetes Ther 2011;2:101-21. 34. Williams ME, Garg R. Glycemic management in ESRD and earlier stages of CKD. Am J Kidney Dis 2014;63:S22-38. 35. Runge S, Mayerle J, Warnke C, et al. Metformin-associated lactic acidosis in patients with renal impairment solely due to drug accumulation? Diabetes Obes Metab 2008;10:91-3. 36. US Food and Drug Administration (FDA): FDA Drug Safety Communication: FDA revises warnings regarding use of the diabetes medicine metformin in certain patients with reduced kidney function. US Food and Drug Administration (FDA). at http://www.fda.gov/downloads/Drugs/DrugSafety/UCM494140.pdf.) 37. Schejter YD, Turvall E, Ackerman Z. Characteristics of patients with sulphonurea-induced hypoglycemia. J Am Med Dir Assoc 2012;13:234-8. 38. Rosenkranz B, Profozic V, Metelko Z, Mrzljak V, Lange C, Malerczyk V. Pharmacokinetics and safety of glimepiride at clinically effective doses in diabetic patients with renal impairment. Diabetologia 1996;39:1617-24. 39. Agrawal A, Sautter MC, Jones NP. Effects of rosiglitazone maleate when added to a sulfonylurea regimen in patients with type 2 diabetes mellitus and mild to moderate renal impairment: a post hoc analysis. Clin Ther 2003;25:2754-64. 40. Abe M, Okada K, Maruyama T, Maruyama N, Soma M, Matsumoto K. Clinical effectiveness and safety evaluation of long-term pioglitazone treatment for erythropoietin responsiveness and insulin resistance in type 2 diabetic patients on hemodialysis. Expert Opin Pharmacother 2010;11:1611-20. 41. Nissen SE, Wolski K. Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med 2010;170:1191-201. 42. Devineni D, Walter YH, Smith HT, Lee JS, Prasad P, McLeod JF. Pharmacokinetics of nateglinide in renally impaired diabetic patients. J Clin Pharmacol 2003;43:163-70. 43. Product Information: PRECOSE(R) oral tablets, acarbose oral tablets. : Bayer HealthCare Pharmaceuticals Inc. (per FDA), Whippany, NJ, 2015. 44. Scheen AJ. Pharmacokinetics and clinical use of incretin-based therapies in patients with chronic kidney disease and type 2 diabetes. Clin Pharmacokinet 2015;54:1-21. 45. Zannad F, Cannon CP, Cushman WC, et al. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet 2015;385:2067-76. 46. Udell JA, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes and moderate or severe renal impairment: observations from the SAVOR-TIMI 53 Trial. Diabetes Care 2015;38:696-705. 47. CAROLINA: Cardiovascular Outcome Study of Linagliptin Versus Glimepiride in Patients With Type 2 Diabetes. at https://clinicaltrials.gov/ct2/show/NCT01243424 NLM Identifier: NCT01243424.) 48. Ingelheim B. Cardiovascular and Renal Microvascular Outcome Study With Linagliptin in Patients With Type 2 Diabetes Mellitus (CARMELINA). 49. Wang KL, Liu CJ, Chao TF, et al. Sitagliptin and the risk of hospitalization for heart failure: a population-based study. Int J Cardiol 2014;177:86-90. 50. Wang SH, Chen DY, Lin YS, et al. Cardiovascular Outcomes of Sitagliptin in Type 2 Diabetic Patients with Acute Myocardial Infarction, a Population-Based Cohort Study in Taiwan. PLoS One 2015;10:e0131122. 51. Chen DY, Wang SH, Mao CT, et al. Sitagliptin After Ischemic Stroke in Type 2 Diabetic Patients: A Nationwide Cohort Study. Medicine (Baltimore) 2015;94:e1128. 52. Chen DY, Wang SH, Mao CT, et al. Sitagliptin and cardiovascular outcomes in diabetic patients with chronic kidney disease and acute myocardial infarction: A nationwide cohort study. Int J Cardiol 2015;181:200-6. 53. Yang TY, Liaw YP, Huang JY, Chang HR, Chang KW, Ueng KC. Association of Sitagliptin with cardiovascular outcome in diabetic patients: a nationwide cohort study. Acta Diabetol 2016;53:461-8. 54. Ou SM, Shih CJ, Chao PW, et al. Effects on Clinical Outcomes of Adding Dipeptidyl Peptidase-4 Inhibitors Versus Sulfonylureas to Metformin Therapy in Patients With Type 2 Diabetes Mellitus. Ann Intern Med 2015;163:663-72. 55. Chang YC, Chuang LM, Lin JW, Chen ST, Lai MS, Chang CH. Cardiovascular risks associated with second-line oral antidiabetic agents added to metformin in patients with Type 2 diabetes: a nationwide cohort study. Diabet Med 2015;32:1460-9. 56. Chan SY, Ou SM, Chen YT, Shih CJ. Effects of DPP-4 inhibitors on cardiovascular outcomes in patients with type 2 diabetes and end-stage renal disease. Int J Cardiol 2016;218:170-5. 57. Chang HY, Weiner JP, Richards TM, Bleich SN, Segal JB. Validating the adapted Diabetes Complications Severity Index in claims data. Am J Manag Care 2012;18:721-6. 58. Young BA, Lin E, Von Korff M, et al. Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. Am J Manag Care 2008;14:15-23. 59. Chen HL, Hsiao FY. Risk of hospitalization and healthcare cost associated with Diabetes Complication Severity Index in Taiwan's National Health Insurance Research Database. J Diabetes Complications 2014;28:612-6. 60. Parsons L. SUGI 26: Reducing Bias in a Propensity Score Matched-Pair Sample Using Greedy Matching Techniques. The SAS Institute 2001. 2007. 61. Lin CC, Lai MS, Syu CY, Chang SC, Tseng FY. Accuracy of diabetes diagnosis in health insurance claims data in Taiwan. J Formos Med Assoc 2005;104:157-63. 62. Wilson C, Susan L, Lynch A, Saria R, Peterson D. Patients with diagnosed diabetes mellitus can be accurately identified in an Indian Health Service patient registration database. Public Health Rep 2001;116:45-50. 63. Zgibor JC, Orchard TJ, Saul M, et al. Developing and validating a diabetes database in a large health system. Diabetes Res Clin Pract 2007;75:313-9. 64. Vlasschaert ME, Bejaimal SA, Hackam DG, et al. Validity of administrative database coding for kidney disease: a systematic review. Am J Kidney Dis 2011;57:29-43. 65. Winkelmayer WC, Schneeweiss S, Mogun H, Patrick AR, Avorn J, Solomon DH. Identification of individuals with CKD from Medicare claims data: a validation study. Am J Kidney Dis 2005;46:225-32. 66. Kern EF, Maney M, Miller DR, et al. Failure of ICD-9-CM codes to identify patients with comorbid chronic kidney disease in diabetes. Health Serv Res 2006;41:564-80. 67. Scirica BM, Braunwald E, Raz I, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation 2014;130:1579-88. 68. Ayaori M, Iwakami N, Uto-Kondo H, et al. Dipeptidyl peptidase-4 inhibitors attenuate endothelial function as evaluated by flow-mediated vasodilatation in type 2 diabetic patients. J Am Heart Assoc 2013;2:e003277. 69. Mulvihill EE, Varin EM, Ussher JR, et al. Inhibition of Dipeptidyl Peptidase-4 Impairs Ventricular Function and Promotes Cardiac Fibrosis in High Fat-Fed Diabetic Mice. Diabetes 2016;65:742-54. 70. Robinson E, Tate M, Lockhart S, et al. Metabolically-inactive glucagon-like peptide-1(9-36)amide confers selective protective actions against post-myocardial infarction remodelling. Cardiovasc Diabetol 2016;15:65. 71. Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivariate Behav Res 2011;46:399-424. 72. Darsalia V, Ortsater H, Olverling A, et al. The DPP-4 inhibitor linagliptin counteracts stroke in the normal and diabetic mouse brain: a comparison with glimepiride. Diabetes 2013;62:1289-96. 73. Simo R, Guerci B, Schernthaner G, et al. Long-term changes in cardiovascular risk markers during administration of exenatide twice daily or glimepiride: results from the European exenatide study. Cardiovasc Diabetol 2015;14:116. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49692 | - |
| dc.description.abstract | 目的:
心血管疾病為第二型糖尿病患者死亡主因之一,而糖尿病藥品心血管風險議題也逐漸成為治療裡的焦點。本研究係探討口服降血糖藥物 (oral hypoglycemic agent, 簡稱OHA) dipeptidyl peptidase-4 (DPP-4) inhibitors之心血管事件風險,並將有無慢性腎臟疾病 (chronic kidney disease, 簡稱CKD) 患者分開比較。 方法: 本研究為回溯性世代研究,以健保資料庫中的百萬歸人檔作為資料來源,將2009年3月至2012年12月年滿20歲、使用至少一種OHA之第二型糖尿病患者,依照有無CKD分為兩族群追蹤研究。研究組別分為DPP-4 inhibitors (DPP-4i) 組與非DPP-4 inhibitors (non-DPP-4i) 組,為消除兩組間差異可能造成之偏誤,以propensity score進行1:1配對。研究終點為因心衰竭入院 (hospitalization for heart failure, 簡稱hHF) 與由心肌梗塞、阻塞性中風、心血管死亡組成之綜合終點major adverse cardiovascular events (MACE),並用COX proportional hazard model作為統計分析。追蹤採用as-treated與intention-to-treat (ITT) analysis,並以前者作為主要分析方法。 結果: 在2009年3月到2012年12月間,我們共篩選出37, 641位糖尿病併CKD患者與87,604位non-CKD糖尿病患者,經過1:1配對後,CKD族群得8,213對患者,non-CKD族群得12,313對患者。主要研究終點分析中,CKD族群DPP-4 inhibitors的使用與25% hHF風險上升相關 (DPP-4i組vs. non-DPP-4i組每一千人年發生率: 15.0 vs. 9.9,HR=1.25; 95% CI 1.01-1.54, p= 0.037),達統計上顯著,若進一步將患者分為透析與未透析,則僅有未透析者達統計上顯著;而non-CKD族群中DPP-4 inhibitors的暴露則與27% MACE發生率降低顯著相關 (DPP-4i組vs. non-DPP-4i組每一千人年發生率: 9.8 vs. 12.6,HR=0.73; 95% CI 0.61-0.87, p= 0.0007),其中與MACE風險降低之關聯性主要受DPP-4 inhibitors暴露與阻塞性中風發生率降低相關所致 (DPP-4i組vs. non-DPP-4i組每一千人年發生率: 7.4 vs. 10.0,HR=0.68; 95% CI 0.55-0.84, p= 0.0003)。在CKD族群之MACE與non-CKD族群之hHF則與藥品之暴露無顯著關聯。ITT分析中,除non-CKD族群DPP-4 inhibitors的使用對MACE (HR= 0.98; 95% CI 0.86-1.12, p= 0.7363) 與阻塞性中風 (HR= 0.95; 95% CI 0.82-1.11, p= 0.5339) 之影響變為不顯著外,其餘結果皆與as-treated分析結果相似。 結論: 第二型糖尿病併CKD患者使用DPP-4 inhibitors與較高的hHF有所關聯而與MACE無顯著相關。然而此風險增加未見於無CKD之第二型糖尿病患者,此一群族中DPP-4 inhibitors反而與MACE的降低有所關聯。本研究結果顯示,第二型糖尿病併CKD患者,特別是尚未進行腎臟透析之患者中,在有替代藥品的情況下不建議選用DPP-4 inhibitors,而可考慮使用短效sulfonylurea (SFU) 類、meglitinide類或insulin作為二線降血糖藥品。在non-CKD的第二型糖尿病且可以耐受的患者中,則建議選用DPP-4 inhibitors做為二線治療藥品。 | zh_TW |
| dc.description.abstract | OBJECTIVES:
Cardiovascular events associated with oral hyperglycemic agents (OHA) have raised significant safety concerns. This study aims to assess whether there is an association between dipeptidyl peptidase-4 (DPP-4) inhibitors, a new class of OHA, and the risk of cardiovascular events in type 2 diabetic patients with or wihout chronic kidney disease (CKD). METHODS: The retrospective cohort study was conducted using the National Health Insurance Research Database (NHIRD) in Taiwan. From the NHIRD, we identified patients diagnosed as type 2 diabetes mellitus. We further selected those who received OHA between March 1st, 2009 and December 31st, 2012 as our study subjects and classified them into the CKD cohort and the non-CKD cohort. Within each cohort we then divided patients as two groups, the DPP-4 inhibitor (DPP-4i) users and non-DPP-4 inhibitor (non-DPP-4i) users . The two groups were 1:1 matched by propensity score to attenuate potential selection bias. Outcomes of interest included a composite endpoint of ischemic stroke, myocardial infarction and cardiovascular death (MACE) and hospitalization for heart failure (hHF). COX proportional hazard models were used to examine the association between DPP-4 inhibitor and outcomes of interest. RESULTS: Between March 2009 and December 2012, we identified a total of 37,641 and 87,604 type 2 diabetic patients with and without CKD, respectively. 12,821 patients in the CKD cohort and 19,821 patients in the non-CKD cohort were exposed to DPP-4 inhibitors, and 24,792 patients in the CKD cohort and 67,732 patients in the non-CKD cohort were not. After propensity score matching, we identified 8,213 pairs of CKD patients and 12,313 pairs of non-CKD patients for analysis. In the CKD cohort, exposure to DPP-4 inhibitors are associated with a 25% increase risk of hHF (DPP-4i vs. non-DPP-4i incidence/1000 person-year: 15.0 vs. 9.9,HR=1.25; 95% CI 1.01-1.54, p= 0.037) but not with the risk of MACE (HR=0.89, p=0.144). When further stratified according to dialysis status, only those not undergoing dialysis show an increase risk of hHF associated with DPP-4 inhibitors use. On the contrary, exposure to DPP-4 inhibitors are associated with a lower risk of MACE (DPP-4i vs. non-DPP-4i incidence/1000 person-year: 9.8 vs. 12.6,HR=0.73; 95% CI 0.61-0.87, p= 0.0007), but not the risk of hHF (HR=1.09, p=0.631) in the non-CKD cohort. The decrease risk of MACE in non-CKD population is mainly contributed by a decrease risk of ischemic stroke (DPP-4i vs. non-DPP-4i incidence/1000 person-year: 7.4 vs. 10.0,HR=0.68; 95% CI 0.55-0.84, p= 0.0003) related to exposure of DPP-4 inhibitors. CONCLUSIONS: Our study shows that exposure to DPP-4 inhibitors is associated with a higher risk of hHF but not the risk of MACE in type 2 diabetic patients with CKD. However, for type 2 diabetic patients without CKD, DPP-4 inhibitors exposure is associated with a lower risk of MACE and ischemic stroke, but not with the risk of hHF. Therefore, we recommended that for type 2 diabetic patients with CKD, especially those not undergoing dialysis, DPP-4 inhibitors should be substituted with other antidiabetic agents (ADA) such as relatively short-acting sulfonylureas (SFUs), meglitinides or insulin. For type 2 diabetic patient without CKD, we recommended the use of DPP-4 inhibitors as second-line therapy, if not otherwise contraindicated. Future study with more comprehensive lab data should be warranted. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:42:19Z (GMT). No. of bitstreams: 1 ntu-105-R03451009-1.pdf: 2261066 bytes, checksum: a558b19a339f15ae68ae9247053f85f2 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 iii 目錄 vi 圖目錄 viii 表目錄 ix 第一章 前言 1 第二章 文獻探討 3 第1節 糖尿病流行病學 3 第2節 糖尿病、慢性腎臟病與心血管疾病之簡介 4 2.2.1 糖尿病與心血管疾病 4 2.2.2 糖尿病與慢性腎臟疾病 5 第3節 糖尿病治療學 6 2.3.1 血糖控制與併發症 6 2.3.2 口服降血糖藥品之簡介 6 2.3.3 慢性腎臟病患者之糖尿病藥品使用 8 第4節DPP-4 inhibitors與心血管疾病風險研究之回顧 11 2.4.1 國外大型臨床試驗 11 2.4.2 國內觀察性研究 12 第三章 研究方法 15 第1節 研究材料 15 第2節 研究族群與定義 16 3.2.1 研究設計 16 3.2.2 納入與排除條件 16 3.2.3 追蹤期間定義 16 3.2.4 研究終點定義 17 3.2.5 藥品暴露定義與分組配對 18 3.2.6 背景資料分析與共變數定義 18 第3節 統計分析 20 3.3.1 描述性統計分析 20 3.3.2 Propensity Score Matching 20 3.3.3 研究終點統計分析 20 第四章 研究結果 22 第1節 研究族群分組與背景資料分析 22 4.1.1 研究分組結果 22 4.1.2 配對前族群背景分析 22 4.1.3 Propensity score建立與配對結果 24 4.1.4 配對後族群背景分析 25 第2節 主要研究分析─As-treated analysis 27 4.2.1 hHF發生率與存活分析 27 4.2.2 MACE發生率與存活分析 27 4.2.3 各DPP-4 inhibitors次族群分析─因心衰竭入院與MACE 28 4.2.4 其餘次族群分析─因心衰竭入院與MACE 28 第3節 次要研究分析─Intention-to-treat analysis 31 4.3.1 hHF發生率與存活分析 31 4.3.2 MACE發生率與存活分析 31 4.3.3 各DPP-4 inhibitors次族群分析─因心衰竭入院與MACE 32 第五章 討論 33 第1節 研究族群分組與背景資料 33 5.1.1 CKD與non-CKD族群之比較 34 5.1.2 DPP-4 inhibitors與non-DPP-4 inhibitors組之比較 34 第2節 hHF事件與DPP-4 inhibitors 36 5.2.1 hHF事件與DPP-4 inhibitors 36 第3節 MACE事件與DPP-4 inhibitors 38 5.3.1 MACE事件與DPP-4 inhibitors 38 第4節 本研究之應用與建議 40 第5節 本研究之優點與限制 41 5.5.1 研究優點與特色 41 5.5.2 研究限制 41 第6節 結論 43 表 44 圖 73 參考文獻 82 | |
| dc.language.iso | zh-TW | |
| dc.subject | MACE | zh_TW |
| dc.subject | 心臟血管事件 | zh_TW |
| dc.subject | 健保資料庫 | zh_TW |
| dc.subject | 第二型糖尿病 | zh_TW |
| dc.subject | 慢性腎臟病 | zh_TW |
| dc.subject | DPP-4 inhibitors | zh_TW |
| dc.subject | 降血糖藥品 | zh_TW |
| dc.subject | 心衰竭 | zh_TW |
| dc.subject | major adverse cardiovascular events (MACE) | en |
| dc.subject | chronic kidney disease | en |
| dc.subject | DPP-4 inhibitors | en |
| dc.subject | type 2 diabetes mellitus | en |
| dc.subject | antidiabetic agents | en |
| dc.subject | hospitalization for heart failure | en |
| dc.subject | National Health Insurance Research Database (NHIRD) | en |
| dc.title | 糖尿病病人合併慢性腎臟病與否使用DPP-4 inhibitors之心血管事件風險 | zh_TW |
| dc.title | Risk of Cardiovascular Events of DPP-4 Inhibitors in Diabetic Patients with and without Chronic Kidney Disease- A Nationwide Cohort Study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 姜至剛(Chih-Kang Chiang),李啟明(Chii-Ming Lee) | |
| dc.subject.keyword | 健保資料庫,第二型糖尿病,慢性腎臟病,DPP-4 inhibitors,降血糖藥品,心衰竭,MACE,心臟血管事件, | zh_TW |
| dc.subject.keyword | National Health Insurance Research Database (NHIRD),type 2 diabetes mellitus,chronic kidney disease,DPP-4 inhibitors,antidiabetic agents,hospitalization for heart failure,major adverse cardiovascular events (MACE), | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU201602521 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床藥學研究所 | zh_TW |
| 顯示於系所單位: | 臨床藥學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
