Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49688
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉(Chuin-Shan Chen)
dc.contributor.authorYu-Chia Liaoen
dc.contributor.author廖郁嘉zh_TW
dc.date.accessioned2021-06-15T11:42:05Z-
dc.date.available2021-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-14
dc.identifier.citationAhn, Y., Saha, J. K., Schatz, G. C., & Jang, J. (2011). Molecular dynamics study of the formation of a self-assembled monolayer on gold. The Journal of Physical Chemistry C, 115(21), 10668-10674.
Berger, R., Delamarche, E., Lang, H. P., Gerber, C., Gimzewski, J. K., Meyer, E., & Güntherodt, H. J. (1997). Surface stress in the self-assembly of alkanethiols on gold. Science, 276(5321), 2021-2024.
Bhadra, P., Shajahan, M. S., Bhattacharya, E., & Chadha, A. (2015). Studies on varying n-alkanethiol chain lengths on a gold coated surface and their effect on antibody–antigen binding efficiency. RSC Advances, 5(98), 80480-80487.
Bolintineanu, D. S., Lane, J. M. D., & Grest, G. S. (2014). Effects of functional groups and ionization on the structure of alkanethiol-coated gold nanoparticles. Langmuir, 30(37), 11075-11085.
Devi, J. M. (2014). Aggregation of thiol coated gold nanoparticles: A simulation study on the effect of polymer coverage density and solvent. Computational Materials Science, 86, 174-179.
Devi, J. M. (2014). A simulation study on the thermal and wetting behavior of alkane thiol SAM on gold (111) surface. Progress in Natural Science: Materials International, 24(4), 405-411.
Fritz, J. (2008). Cantilever biosensors. analyst, 133(7), 855-863.
Ghorai, P. K., & Glotzer, S. C. (2007). Molecular dynamics simulation study of self-assembled monolayers of alkanethiol surfactants on spherical gold nanoparticles. The Journal of Physical Chemistry C, 111(43), 15857-15862.
Grochola, G., Russo, S. P., & Snook, I. K. (2005). On fitting a gold embedded atom method potential using the force matching method. The Journal of chemical physics, 123(20), 204719.
Hansen, K. M., & Thundat, T. (2005). Microcantilever biosensors. Methods, 37(1), 57-64.
Hautman, J., & Klein, M. L. (1989). Simulation of a monolayer of alkyl thiol chains. The Journal of Chemical Physics, 91(8), 4994-5001.
Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of molecular graphics, 14(1), 33-38. http://www.ks.uiuc.edu/Research/vmd/
Igarashi, S., Itakura, A. N., Kitajima, M., Chifen, A. N., Förch, R., & Berger, R. (2006). Surface stress control using ultraviolet light irradiation of plasma-polymerized thin films. Applied physics letters, 88(14), 143119.
Karpovich, D. S., & Blanchard, G. J. (1994). Direct measurement of the adsorption kinetics of alkanethiolate self-assembled monolayers on a microcrystalline gold surface. Langmuir, 10(9), 3315-3322.
Kondoh, H., Matsui, F., Ehara, Y., Yokoyama, T., & Ohta, T. (2001). Surface-monolayer-controlled molecular alignment of short n-alkane multilayers. Langmuir, 17(26), 8178-8183.
Laibinis, P. E., Whitesides, G. M., Allara, D. L., Tao, Y. T., Parikh, A. N., & Nuzzo, R. G. (1991). Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. Journal of the American Chemical Society, 113(19), 7152-7167.
Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., & Whitesides, G. M. (2005). Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews, 105(4), 1103-1170.
Mahaffy, R., Bhatia, R., & Garrison, B. J. (1997). Diffusion of a butanethiolate molecule on a Au {111} surface. The Journal of Physical Chemistry B, 101(5), 771-773.
Pan, W., Durning, C. J., & Turro, N. J. (1996). Kinetics of alkanethiol adsorption on gold. Langmuir, 12(18), 4469-4473.
Poirier, G. E., & Pylant, E. D. (1996). The self-assembly mechanism of alkanethiols on Au (111). Science, 272(5265), 1145.
Porter, M. D., Bright, T. B., Allara, D. L., & Chidsey, C. E. (1987). Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. Journal of the American Chemical Society, 109(12), 3559-3568.
Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 117(1), 1-19. http://lammps.sandia.gov
Schreiber, F. (2000). Structure and growth of self-assembling monolayers. Progress in surface science, 65(5), 151-257.
Schreiber, F. (2004). Self-assembled monolayers: from ‘simple’model systems to biofunctionalized interfaces. Journal of Physics: Condensed Matter, 16(28), R881.
Schwartz, D. K. (2001). Mechanisms and kinetics of self-assembled monolayer formation. Annual Review of Physical Chemistry, 52(1), 107-137.
Shih, Y. C. (2013). First-Principles Surface Stress Calculations and Multiscale Deformation Analysis of a Self-Assembled Monolayer Adsorbed on Microcantilever. 臺灣大學應用力學研究所學位論文, 1-59.
Subramanian, R., & Lakshminarayanan, V. (2000). A study of kinetics of adsorption of alkanethiols on gold using electrochemical impedance spectroscopy. Electrochimica Acta, 45(27), 4501-4509.
Vemparala, S., Karki, B. B., Kalia, R. K., Nakano, A., & Vashishta, P. (2004). Large-scale molecular dynamics simulations of alkanethiol self-assembled monolayers. The Journal of chemical physics, 121(9), 4323-4330.
Vericat, C., Vela, M. E., & Salvarezza, R. C. (2005). Self-assembled monolayers of alkanethiols on Au (111): surface structures, defects and dynamics. Physical Chemistry Chemical Physics, 7(18), 3258-3268.
Vericat, C., Vela, M. E., Benitez, G. A., Gago, J. M., Torrelles, X., & Salvarezza, R. C. (2006). Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au (111). Journal of Physics: Condensed Matter, 18(48), R867.
Zhang, L., Goddard III, W. A., & Jiang, S. (2002). Molecular simulation study of the c (4× 2) superlattice structure of alkanethiol self-assembled monolayers on Au (111). The Journal of chemical physics, 117(15), 7342-7349.
Zhang, R., Best, A., Berger, R., Cherian, S., Lorenzoni, S., Macis, E., ... & Cain, R. (2007). Multiwell micromechanical cantilever array reader for biotechnology. Review of Scientific Instruments, 78(8), 084103.
Zhao, J., Berger, R., & Gutmann, J. S. (2006). Thermal contributions to the bending of bimaterial cantilever sensors. Applied physics letters, 89(3), 3110.
Zhao, X., Leng, Y., & Cummings, P. T. (2006). Self-assembly of 1, 4-benzenedithiolate/tetrahydrofuran on a gold surface: A Monte Carlo simulation study. Langmuir, 22(9), 4116-4124.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49688-
dc.description.abstract微懸臂梁生物感測器的便利、高精確度和低成本,使之近年來漸受關注。烷基硫醇分子是常用於連結微懸臂梁與感測分子的自組裝單層分子,不同碳鏈長度硫醇自組裝單層分子排列的特性相異,並且會對微懸臂梁生物感測結果與靈敏度造成影響,然而微觀尺度的實驗觀察不易,且多為對單一長度的碳鏈長度進行研究,因此本研究欲以分子動力模擬觀察不同碳鏈長度硫醇自組裝單層分子之吸附,希望透過模擬了解其吸附的機制,進而改善微懸臂梁感測器之設計。
本研究以分子動力模擬分析自組裝烷基硫醇分子於微懸臂梁之金(1 1 1)表面之吸附,探討兩種濃度(0.540M、1.080M)和四種碳鏈長度(2、6、10、14)時,覆蓋率對吸附行為和吸附硫醇分子傾斜角度的影響。我們觀察到硫醇自組裝單層分子膜的形成過程可分為三個階段,第一階段為當表面的覆蓋率極低時,吸附的硫醇分子會在表面移動。第二階段時,平躺於表面不移動但無規則排列。當表面的覆蓋率高時,則幾乎不動,僅小幅度的偏移。當平躺的覆蓋率達飽和時進入第三階段,此時傾斜角度的分布開始改變,可以看到傾斜角度θ較小的硫醇分子散布於金表面,並且此覆蓋率極限隨碳鏈長度增加而下降。此外,觀察到短碳鏈硫醇分子的排列較無規律,且沒有不同的形成階段。
zh_TW
dc.description.abstractMicrocantilever-based biosensors have received much attention because of the features of convenience, high precision, and low cost. Alkanethiol is a common self-assembled monolayer used to link the surface of microcantilever-based biosensors and biorecognition elements. The adsorption and chain length effects of alkanethiols on gold affect the sensing results and sensitivity of microcantilever-based biosensors. The objective of this work is to understand the kinetics and mechanisms of alkanethiols adsorption with varying chain length. The understanding will shed light on the design of microcantilever-based biosensors in the future..
Molecular dynamics simulations are used to analyze the adsorption of alkanethiol self-assembled monolayers on Au(111). The influence of adsorption coverage on tilting angle of alkanethiols and formation of self-assembled monolayers is observed. Two different concentrations (0.540M、1.080M) and four different chain lengths (2、6、10、14) of alkanethiols are also discussed. The simulation results show that alkanethiols are mobile on gold surface with low coverage and immobile with higher coverage. In the process of adsorption, the distribution of alkanethiols tilting angle changes when certain coverage is reached, and this coverage decreased with longer chain length of alkanethiols. While the coverage exceeds the limit of lying phase, alkanethiols with small tilting angle begin to be scattered on gold surface. Moreover, the structure is more disordered and no distinct formation phases are observed for alkanethiols with short chain length.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:42:05Z (GMT). No. of bitstreams: 1
ntu-105-R03521605-1.pdf: 5948366 bytes, checksum: fba73e28dec49583cdb9863f631d5bc8 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 研究背景 1
1.1.1 生物感測器 1
1.1.2 硫醇自組裝單層分子簡介 3
1.1.3 文獻回顧 7
1.2 研究目的 13
1.3 論文架構 13
第二章 研究方法 15
2.1 分子動力模擬 15
2.2 模擬軟體與工具 16
2.3 分子動力模擬勢能 17
2.4 硫醇分子於金表面之模擬 18
2.5 分析項目 23
第三章 模擬結果 25
3.1 碳鏈長度對角度(θ與φ)之影響 31
3.2 覆蓋率對角度(θ與φ)之影響 35
3.3 硫醇自組裝單層分子膜 44
第四章 結果分析與討論 46
4.1 硫醇分子在不同吸附覆蓋率時之結構 46
4.2 硫醇自組裝單層分子之形成過程 53
第五章 結論與未來展望 57
5.1 結論 57
5.2 未來展望 58
參考文獻 59
dc.language.isozh-TW
dc.title以分子動力模擬探討烷基硫醇分子於金表面之吸附與自組裝行為zh_TW
dc.titleInvestigating adsorption and self-assembly of alkanethiol monolayers on gold surface using molecular dynamic simulationsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林祥泰(Shiang-Tai Lin),張書瑋(Shu-Wei Chang)
dc.subject.keyword分子動力模擬,微懸臂梁生物感測器,硫醇分子,吸附,碳鏈長度,覆蓋率,傾斜角度,zh_TW
dc.subject.keywordmolecular dynamics simulation,microcantilever-based biosensors,alkanethiols,adsorption,chain length,coverage,tilting angle,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201602027
dc.rights.note有償授權
dc.date.accepted2016-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
5.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved