Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49668
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林淑華(Shu-Wha Lin)
dc.contributor.authorJhih-Yi Youen
dc.contributor.author游之易zh_TW
dc.date.accessioned2021-06-15T11:40:53Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-15
dc.identifier.citation參考文獻
1. Catterall, W.A., Sodium channels, inherited epilepsy, and antiepileptic drugs. Annual Review of Pharmacology and Toxicology, 2014. 54: p. 317-338.
2. Kim, D.Y., et al., BACE1 regulates voltage-gated sodium channels and neuronal activity. Nature Cell Biology, 2007. 9(7): p. 755-764.
3. Yarov-Yarovoy, V., et al., Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proceedings of the National Academy of Sciences, 2012. 109(2): p. E93-E102.
4. Isom, L.L. and K. De Jongh, Primary Structure and Functional Expression of the (Beta1) Subunit of the Rat Brain Sodium Channel. Science, 1992. 256(5058): p. 839.
5. Isom, L., et al., Structure and function of the β2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell, 1995. 83(3): p. 433-442.
6. Catterall, W.A., From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron, 2000. 26(1): p. 13-25.
7. Chen, C., et al., Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel β2-subunits. Proceedings of the National Academy of Sciences, 2002. 99(26): p. 17072-17077.
8. Aman, T.K., et al., Regulation of persistent Na current by interactions between β subunits of voltage-gated Na channels. The Journal of Neuroscience, 2009. 29(7): p. 2027-2042.
9. Brackenbury, W.J., et al., Voltage-gated Na+ channel β1 subunit-mediated neurite outgrowth requires Fyn kinase and contributes to postnatal CNS development in vivo. The Journal of Neuroscience, 2008. 28(12): p. 3246-3256.
10. Lopez-Santiago, L.F., et al., Sodium channel β2 subunits regulate tetrodotoxin-sensitive sodium channels in small dorsal root ganglion neurons and modulate the response to pain. The Journal of Neuroscience, 2006. 26(30): p. 7984-7994.
11. Uebachs, M., et al., Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel β subunits via paradoxical effects on persistent sodium currents. The Journal of Neuroscience, 2010. 30(25): p. 8489-8501.
12. Catterall, W.A., F. Kalume, and J.C. Oakley, NaV1. 1 channels and epilepsy. The Journal of Physiology, 2010. 588(11): p. 1849-1859.
13. Genton, P., R. Velizarova, and C. Dravet, Dravet syndrome: The long‐term outcome. Epilepsia, 2011. 52(s2): p. 44-49.
14. Lossin, C., A catalog of SCN1A variants. Brain and Development, 2009. 31(2): p. 114-130.
15. Catterall, W.A., et al., Inherited neuronal ion channelopathies: new windows on complex neurological diseases. The Journal of Neuroscience, 2008. 28(46): p. 11768-11777.
16. Bordeira-Carriço, R., et al., Cancer syndromes and therapy by stop-codon readthrough. Trends in Molecular Medicine, 2012. 18(11): p. 667-678.
17. Linde, L. and B. Kerem, Introducing sense into nonsense in treatments of human genetic diseases. Trends in Genetics, 2008. 24(11): p. 552-563.
18. Keeling, K.M., et al., Therapeutics based on stop codon readthrough. Annual Review of Genomics and Human Genetics, 2014. 15: p. 371-394.
19. Kervestin, S. and A. Jacobson, NMD: a multifaceted response to premature translational termination. Nature Reviews Molecular Cell Biology, 2012. 13(11): p. 700-712.
20. François, B., et al., Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic Acids Research, 2005. 33(17): p. 5677-5690.
21. Barton-Davis, E.R., et al., Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. The Journal of Clinical Investigation, 1999. 104(4): p. 375-381.
22. Heier, C.R. and C.J. DiDonato, Translational readthrough by the aminoglycoside geneticin (G418) modulates SMN stability in vitro and improves motor function in SMA mice in vivo. Human Molecular Genetics, 2009. 18(7): p. 1310-1322.
23. Welch, E.M., et al., PTC124 targets genetic disorders caused by nonsense mutations. Nature, 2007. 447(7140): p. 87-91.
24. Du, M., et al., PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proceedings of the National Academy of Sciences, 2008. 105(6): p. 2064-2069.
25. Goldmann, T., et al., PTC124-mediated translational readthrough of a nonsense mutation causing Usher syndrome type 1C. Human Gene Therapy, 2011. 22(5): p. 537-547.
26. Haas, M., et al., European Medicines Agency review of ataluren for the treatment of ambulant patients aged 5 years and older with Duchenne muscular dystrophy resulting from a nonsense mutation in the dystrophin gene. Neuromuscular Disorders, 2015. 25(1): p. 5-13.
27. Finkel, R.S., et al., Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLOS One, 2013. 8(12): p. e81302.
28. Roy, B., et al., Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proceedings of the National Academy of Sciences, 2015. 112(10): p. 3038-3043.
29. Volkers, L., et al., Nav1. 1 dysfunction in genetic epilepsy with febrile seizures‐plus or Dravet syndrome. European Journal of Neuroscience, 2011. 34(8): p. 1268-1275.
30. Lossin, C., et al., Molecular basis of an inherited epilepsy. Neuron, 2002. 34(6): p. 877-884.
31. Bechi, G., et al., Rescuable folding defective NaV1.1 (SCN1A) mutants in epilepsy: Properties, occurrence, and novel rescuing strategy with peptides targeted to the endoplasmic reticulum. Neurobiology of Disease, 2015. 75: p. 100-114.
32. Rusconi, R., et al., Modulatory proteins can rescue a trafficking defective epileptogenic Nav1. 1 Na+ channel mutant. The Journal of Neuroscience, 2007. 27(41): p. 11037-11046.
33. Thompson, C.H., et al., Nontruncating SCN1A mutations associated with severe myoclonic epilepsy of infancy impair cell surface expression. Journal of Biological Chemistry, 2012. 287(50): p. 42001-42008.
34. Sugawara, T., et al., Na v 1.1 channels with mutations of severe myoclonic epilepsy in infancy display attenuated currents. Epilepsy Research, 2003. 54(2): p. 201-207.
35. Teng, S., et al., Readthrough of nonsense mutation W822X in the SCN5A gene can effectively restore expression of cardiac Na+ channels. Cardiovascular Research, 2009. 83(3): p. 473-480.
36. Margherita Mancardi, M., et al., Familial occurrence of febrile seizures and epilepsy in severe myoclonic epilepsy of infancy (SMEI) patients with SCN1A mutations. Epilepsia, 2006. 47(10): p. 1629-1635.
37. Szymczak, A.L., et al., Correction of multi-gene deficiency in vivo using a single'self-cleaving'2A peptide–based retroviral vector. Nature Biotechnology, 2004. 22(5): p. 589-594.
38. Chioni, A.-M., et al., A novel adhesion molecule in human breast cancer cells: Voltage-gated Na+ channel β1 subunit. The International Journal of Biochemistry & Cell Biology, 2009. 41(5): p. 1216-1227.
39. Feldman, D.H. and C. Lossin, The Nav channel bench series: Plasmid preparation. MethodsX, 2014. 1: p. 6-11.
40. Sambrook, J. and D. Russell, The Hanahan Method for Preparation and Transformation of Competent E. coli: High-efficiency Transformation. CSH protocols, 2005. 2006(1): p. 748-755.
41. Wong, H.-K., et al., β Subunits of voltage-gated sodium channels are novel substrates of β-site amyloid precursor protein-cleaving enzyme (BACE1) and γ-secretase. Journal of Biological Chemistry, 2005. 280(24): p. 23009-23017.
42. Winkler, E., et al., Purification, Pharmacological Modulation, and Biochemical Characterization of Interactors of Endogenous Human γ-Secretase. Biochemistry, 2009. 48(6): p. 1183-1197.
43. Trinh, T., et al., STBL2TM: an Escherichia coli strain for the stable propagation of retroviral clones and direct repeat sequences. Focus, 1994. 16: p. 78-80.
44. Woodcock, D., et al., Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Research, 1989. 17(9): p. 3469-3478.
45. Grant, S.G., et al., Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proceedings of the National Academy of Sciences, 1990. 87(12): p. 4645-4649.
46. Doherty, J., et al., Effects of mcr restriction of methylated CpG islands of the L1 transposons during packaging and plating stages of mammalian genomic library construction. Gene, 1991. 98(1): p. 77-82.
47. Thomas, P. and T.G. Smart, HEK293 cell line: a vehicle for the expression of recombinant proteins. Journal of Pharmacological and Toxicological Methods, 2005. 51(3): p. 187-200.
48. Sherman, A.J., A. Shrier, and E. Cooper, Series resistance compensation for whole-cell patch-clamp studies using a membrane state estimator. Biophysical Journal, 1999. 77(5): p. 2590-2601.
49. Rasband, M.N., The axon initial segment and the maintenance of neuronal polarity. Nature Reviews Neuroscience, 2010. 11(8): p. 552-562.
50. Jingami, N., et al., A novel SCN1A mutation in a cytoplasmic loop in intractable juvenile myoclonic epilepsy without febrile seizures. Epileptic Disorders, 2014. 16(2): p. 227-231.
51. Ceulemans, B.P., L.R. Claes, and L.G. Lagae, Clinical correlations of mutations in the SCN1A gene: from febrile seizures to severe myoclonic epilepsy in infancy. Pediatric Neurology, 2004. 30(4): p. 236-243.
52. McNally, E.M. and A.L. George, New approaches to establish genetic causality. Trends in Cardiovascular Medicine, 2015. 25(7): p. 646-652.
53. Kahlig, K.M., et al., Divergent sodium channel defects in familial hemiplegic migraine. Proceedings of the National Academy of Sciences, 2008. 105(28): p. 9799-9804.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49668-
dc.description.abstract鈉離子通道的突變與遺傳性癲癇疾病極為相關,且臨床病患症狀嚴重度變異性高,其中最相關的基因為SCN1A。約一半SMEI病患帶有無義突變SCN1A基因,此類病患在癲癇疾病中症狀最為嚴重,且對於臨床藥物多具抗藥性。鑒於此類疾病的不良預後,帶有突變型SCN1A的SMEI症候群符合未滿足醫療迫切需求。過去研究團隊以抑制無義突變抑制治療對由無義突變引起的疾病進行藥物開發,概念為利用藥物在提前終止密碼子上插入任意胺基酸,使產生錯義突變的全長通讀蛋白質。最近有團隊利用酵母菌系統以慶大黴素 (gentamicin) 誘導通讀時,發現在提前終止密碼點會插入特定幾種胺基酸,此研究結果使得科學家可預測通讀蛋白種類及功能。基於上述,利用無義突變抑制治療策略對SCN1A無義突變的病患具有發展潛力。為了研究由通讀誘導出的SCN1A蛋白質是否具有正常的生理功能,本論文建構野生型及4種突變型SCN1A基因的載體pCMV-EGFP-hSCN1A (SCN1A蛋白N端以EGFP標記),並轉染表現於穩定表現SCN1B及SCN2B蛋白的HEK293細胞株,以全細胞紀錄方式分析電生理特性。實驗結果顯示,HEK293穩定細胞株可測得SCN1B及SCN2B蛋白質表現,並成功地被2A胜肽切斷。全細胞紀錄發現SCN1A-E1099X完全無法產生電流,而SCN1A-E1099Q可回復表現與SCN1AWT相同電流量及通道開關動力學,顯示SCN1A-E1099Q異義突變蛋白能回復鈉離子通道的開關功能。本論文研究成果不僅提供以2A胜肽技術在HEK293細胞上同時穩定表現SCN1B及SCN2B的新方法,也提供以通讀誘導藥物治療SCN1A無義突變的未來發展潛力。-zh_TW
dc.description.abstractMutations in sodium channels are one of clinically relevant genetic epilepsies with a various range of severity. Especially, the most predominant target of mutation is the NaV1.1 channel encoded by the SCN1A gene. Truncation mutations in the SCN1A gene account for nearly 50% of SMEI patients, and most of them have intractable epilepsy after current epilepsy treatment. Due to the poor prognosis, patient with SCN1A nonsense mutation address an unmet medical need. Nonsense suppression therapy is a newly developed therapeutic approach for nonsense mutation diseases, which incorporates an amino acid at premature termination codons (PTCs). This process may lead to a missense mutation in a functional or non-functional readthrough protein. Recently, a study in S. cerevisiae identified that some specific sets of amino acids are inserted at PTCs after gentamicin treatment, which narrows the possible sets of proteins and its functionality after readthrough. Based on the above, the potential of nonsense suppression therapy for patients with SCN1A nonsense mutation is worthy of investigation. To investigate the electrophysiological properties of readthrough-induced SCN1A proteins in vitro, we generated chimeric constructs pCMV-EGFP-hSCN1A (N-terminal tagging of SCN1A) harboring wild-type (SCN1A-WT), nonsense mutation (SCN1A-E1099X) or three possible readthrough-induced proteins (SCN1A-E1099Q, SCN1A-E1099K, SCN1A-E1099Y). Meanwhile, we generated HEK293 cells stably expressing SCN1B and SCN2B proteins for modulating the kinetics of SCN1A protein. Our results showed that SCN1B and SCN2B proteins in stable cell lines were successfully cleaved by 2A peptides. By whole cell recordings, we characterized the electrophysiological properties of SCN1A-WT, SCN1AE1099X and SCN1AE1099Q. SCN1AE1099X predominantly lost the capacity of generating currents predominantly, decreasing Na+ current to <100 pA. SCN1AE1099Q retained the same Na+ currents and biophysical functions of wild-type channels, which indicated SCN1AE1099Q can restore the expression of Na+ channel with the normal function. Our analyses not only provide a new way to establish multi-protein expression of SCN1B and SCN2B proteins in HEK293 cell , but also validate the functionality of readthrough SCN1A protein.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:40:53Z (GMT). No. of bitstreams: 1
ntu-105-R03424006-1.pdf: 2733923 bytes, checksum: ca80a61afd063c726725d55dd68c2fc4 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents第一章 緒論 1
1.1 電壓感應式鈉離子通道結構與功能 1
1.2 鈉離子通道與癲癇 1
1.3 無義突變抑制治療研究與臨床應用 2
1.4 以人類細胞模式研究突變型SCN1A蛋白質功能及治療評估 4
1.5 研究動機 4
第二章 方法與材料 6
2.1建構載有人類SCN1A, SCN1B與SCN2B序列之載體 6
2.1.1 細胞培養 6
2.1.2 RNA萃取 (RNA Extraction) 6
2.1.3 反轉錄聚合酶鏈式反應 (RT-PCR) 7
2.1.4 TA選殖 (TA cloning) 8
2.1.5 轉型作用 (transformation) 及細菌培養 8
2.1.6質體純化 (Plasmid Purification) 9
2.1.7限制位分析 (Restriction analysis) 10
2.1.8定序 (Sequencing) 10
2.2建立穩定表現人類SCN1B及SCN2B細胞株 11
2.2.1 細胞培養與轉染作用 (Transfection) 11
2.2.2穩定表現細胞株篩選 11
2.2.3人類SCN1B, SCN2B蛋白萃取及西方墨點法分析 11
2.2.4流式細胞儀分析 13
2.3 電生理分析 13
2.3.1 細胞培養與轉染作用 (Transfection) 13
2.3.2人類SCN1A蛋白萃取及西方墨點法分析 14
2.3.2細胞膜片箝制紀錄 (patch-clamp recording) 與資料分析 15
2.3.2免疫螢光染色法分析 16
第三章 實驗結果 17
3.1 建立可同時穩定表現人類SCN1B及SCN2B蛋白的細胞株 17
3.2 野生型及突變型人類SCN1A基因載體建構及其蛋白功能分析 17
第四章 討論 21
4.1人類SCN1B及SCN2B蛋白在細胞內的調控機制 21
4.2人類SCN1A基因選殖的條件 21
4.3 SCN1A電生理特性 22
4.2以體外實驗及電腦軟體預測SCN1A通讀蛋白功能 23
第五章 參考文獻 24
圖 29-48
圖一、同時表現人類SCN1A, SCN1B與SCN2B蛋白質的HEK293細胞株示意圖 29
圖二、建構pCMV-hSCN1B/2A-hSCN2B/2A-DsRed1載體 30-33
圖三、HEK293細胞株表現人類SCN1B, SCN2B及DsRed1之螢光及蛋白質分析 34
圖四、穩定表現人類SCN1B和SCN2B細胞株的西方墨點法分析 36
圖五、以流式細胞儀分析HEK293-hSCN1B/ hSCN2B穩定細胞株 37
圖六、建構pCMV-EGFP-hSCN1A-WT及pCMV-EGFP-hSCN1A-Mut載體 39
圖七、野生型及突變型人類SCN1A螢光表現與蛋白分析 41
圖八、同時表現SCN1A, SCN1B及SCN2B蛋白之HEK293細胞株 43
圖九、人類野生型及突變型SCN1A離子通道之電生理特性 45
圖十、電位依賴性活化 (voltage-dependent activation) 及快速去活化 (voltage-dependent fast inactivation) 之通道動力學特性 47
表 49-50
表一、以蛋白功能性分析軟體預測在第1099號胺基酸替換的人類SCN1A蛋白功能 49
表二、人類SCN1A定序用引子 50
表三、用於人類SCN1A基因上點突變之引子 50
dc.language.isozh-TW
dc.subject電生理zh_TW
dc.subjectSCN1Azh_TW
dc.subjectSCN1Bzh_TW
dc.subjectSCN2Bzh_TW
dc.subject通讀zh_TW
dc.subject無義突變zh_TW
dc.subjectreadthroughen
dc.subjectelectrophysiologyen
dc.subjectnonsense mutationen
dc.subjectSCN1Aen
dc.subjectSCN1Ben
dc.subjectSCN2Ben
dc.title"利用HEK293細胞株表現人類SCN1A,SCN1B及SCN2B蛋白質探討SCN1A變異蛋白質的功能"zh_TW
dc.titleCharacterization of readthrough protein products using HEK293 cell line expressing hSCN1A, hSCN1B and hSCN2Ben
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許麗卿(Lih-Ching Hsu),陳佑宗(You-Tzung Chen),黃憲松(Hsien-Sung Huang)
dc.subject.keywordSCN1A,SCN1B,SCN2B,通讀,無義突變,電生理,zh_TW
dc.subject.keywordSCN1A,SCN1B,SCN2B,readthrough,nonsense mutation,electrophysiology,en
dc.relation.page50
dc.identifier.doi10.6342/NTU201602384
dc.rights.note有償授權
dc.date.accepted2016-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved