請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49667完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙遠宏 | |
| dc.contributor.author | Yu-Fu Wu | en |
| dc.contributor.author | 吳聿富 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:40:50Z | - |
| dc.date.available | 2016-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-15 | |
| dc.identifier.citation | 1. Ranger TA, Wong AM, Cook JL, Gaida JE. Is there an association between tendinopathy and diabetes mellitus? A systematic review with meta-analysis. Br J Sports Med. 2015.
2. Theobald P, Benjamin M, Nokes L, Pugh N. Review of the vascularisation of the human achilles tendon. Injury. 2005:36:1267-72. 3. Carr AJ, Norris SH. The blood supply of the calcaneal tendon. J Bone Joint Surg Br. 1989:71:100-1. 4. Wang JH. Mechanobiology of tendon. J Biomech. 2006:39:1563-82. 5. Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments--an adaptation to compressive load. J Anat. 1998:193 ( Pt 4):481-94. 6. Lui PP, Maffulli N, Rolf C, Smith RK. What are the validated animal models for tendinopathy? Scand J Med Sci Sports. 2011:21:3-17. 7. Patterson-Kane JC, Rich T. Achilles tendon injuries in elite athletes: Lessons in pathophysiology from their equine counterparts. ILAR J. 2014:55:86-99. 8. Warden SJ. Animal models for the study of tendinopathy. Br J Sports Med. 2007:41:232-40. 9. Evans CE, Trail IA. Fibroblast-like cells from tendons differ from skin fibroblasts in their ability to form three-dimensional structures in vitro. J Hand Surg Br. 1998:23:633-41. 10. Nourissat G, Berenbaum F, Duprez D. Tendon injury: From biology to tendon repair. Nat Rev Rheumatol. 2015:11:223-33. 11. Thorpe CT, Udeze CP, Birch HL, Clegg PD, Screen HR. Specialization of tendon mechanical properties results from interfascicular differences. J R Soc Interface. 2012:9:3108-17. 12. Ehlers TW, Vogel KG. Proteoglycan synthesis by fibroblasts from different regions of bovine tendon cultured in alginate beads. Comp Biochem Physiol A Mol Integr Physiol. 1998:121:355-63. 13. Banes AJ, Donlon K, Link GW, Gillespie Y, Bevin AG, Peterson HD, et al. Cell populations of tendon: A simplified method for isolation of synovial cells and internal fibroblasts: Confirmation of origin and biologic properties. J Orthop Res. 1988:6:83-94. 14. Jones ME, Mudera V, Brown RA, Cambrey AD, Grobbelaar AO, McGrouther DA. The early surface cell response to flexor tendon injury. J Hand Surg Am. 2003:28:221-30. 15. Cadby JA, Buehler E, Godbout C, van Weeren PR, Snedeker JG. Differences between the cell populations from the peritenon and the tendon core with regard to their potential implication in tendon repair. PLoS One. 2014:9:e92474. 16. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007:13:1219-27. 17. Liu H, Zhu S, Zhang C, Lu P, Hu J, Yin Z, et al. Crucial transcription factors in tendon development and differentiation: Their potential for tendon regeneration. Cell Tissue Res. 2014:356:287-98. 18. Lui PP, Rui YF, Ni M, Chan KM. Tenogenic differentiation of stem cells for tendon repair-what is the current evidence? J Tissue Eng Regen Med. 2011:5:e144-63. 19. Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev. 2015:84:240-56. 20. Abate M, Schiavone C, Salini V, Andia I. Occurrence of tendon pathologies in metabolic disorders. Rheumatology (Oxford). 2013:52:599-608. 21. Zakaria MH, Davis WA, Davis TM. Incidence and predictors of hospitalization for tendon rupture in type 2 diabetes: The fremantle diabetes study. Diabet Med. 2014:31:425-30. 22. Guney A, Vatansever F, Karaman I, Kafadar IH, Oner M, Turk CY. Biomechanical properties of achilles tendon in diabetic vs. Non-diabetic patients. Exp Clin Endocrinol Diabetes. 2015:123:428-32. 23. Cho NS, Moon SC, Jeon JW, Rhee YG. The influence of diabetes mellitus on clinical and structural outcomes after arthroscopic rotator cuff repair. Am J Sports Med. 2015:43:991-7. 24. Abate M, Salini V, Antinolfi P, Schiavone C. Ultrasound morphology of the achilles in asymptomatic patients with and without diabetes. Foot Ankle Int. 2014:35:44-9. 25. Akturk M, Ozdemir A, Maral I, Yetkin I, Arslan M. Evaluation of achilles tendon thickening in type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2007:115:92-6. 26. Giacomozzi C, D'Ambrogi E, Uccioli L, Macellari V. Does the thickening of achilles tendon and plantar fascia contribute to the alteration of diabetic foot loading? Clin Biomech (Bristol, Avon). 2005:20:532-9. 27. Papanas N, Courcoutsakis N, Papatheodorou K, Daskalogiannakis G, Maltezos E, Prassopoulos P. Achilles tendon volume in type 2 diabetic patients with or without peripheral neuropathy: Mri study. Exp Clin Endocrinol Diabetes. 2009:117:645-8. 28. Lundbaek K. Stiff hands in long-term diabetes. Acta Med Scand. 1957:158:447-51. 29. de Oliveira RR, Martins CS, Rocha YR, Braga AB, Mattos RM, Hecht F, et al. Experimental diabetes induces structural, inflammatory and vascular changes of achilles tendons. PLoS One. 2013:8:e74942. 30. Batista F, Nery C, Pinzur M, Monteiro AC, de Souza EF, Felippe FH, et al. Achilles tendinopathy in diabetes mellitus. Foot Ankle Int. 2008:29:498-501. 31. Ahmed AS, Schizas N, Li J, Ahmed M, Ostenson CG, Salo P, et al. Type 2 diabetes impairs tendon repair after injury in a rat model. J Appl Physiol (1985). 2012:113:1784-91. 32. Mavrikakis ME, Drimis S, Kontoyannis DA, Rasidakis A, Moulopoulou ES, Kontoyannis S. Calcific shoulder periarthritis (tendinitis) in adult onset diabetes mellitus: A controlled study. Ann Rheum Dis. 1989:48:211-4. 33. Ji J, wang Z, Shi D, Gao X, Jiang Q. Pathologic changes of achilles tendon in leptin-deficient mice. Rheumatol Int. 2010:30:489-93. 34. Shi L, Rui YF, Li G, Wang C. Alterations of tendons in diabetes mellitus: What are the current findings? Int Orthop. 2015:39:1465-73. 35. Tsai WC, Liang FC, Cheng JW, Lin LP, Chang SC, Chen HH, et al. High glucose concentration up-regulates the expression of matrix metalloproteinase-9 and -13 in tendon cells. BMC Musculoskelet Disord. 2013:14:255. 36. Rosenthal AK, Gohr CM, Mitton E, Monnier V, Burner T. Advanced glycation end products increase transglutaminase activity in primary porcine tenocytes. J Investig Med. 2009:57:460-6. 37. Burner T, Gohr C, Mitton-Fitzgerald E, Rosenthal AK. Hyperglycemia reduces proteoglycan levels in tendons. Connect Tissue Res. 2012:53:535-41. 38. Poulsen RC, Knowles HJ, Carr AJ, Hulley PA. Cell differentiation versus cell death: Extracellular glucose is a key determinant of cell fate following oxidative stress exposure. Cell Death Dis. 2014:5:e1074. 39. Van den Berghe G. How does blood glucose control with insulin save lives in intensive care? J Clin Invest. 2004:114:1187-95. 40. Poulsen RC, Carr AJ, Hulley PA. Protection against glucocorticoid-induced damage in human tenocytes by modulation of erk, akt, and forkhead signaling. Endocrinology. 2011:152:503-14. 41. Mazzocca AD, McCarthy MB, Chowaniec D, Cote MP, Judson CH, Apostolakos J, et al. Bone marrow-derived mesenchymal stem cells obtained during arthroscopic rotator cuff repair surgery show potential for tendon cell differentiation after treatment with insulin. Arthroscopy. 2011:27:1459-71. 42. Caldarelli I, Speranza MC, Bencivenga D, Tramontano A, Borgia A, Pirozzi AV, et al. Resveratrol mimics insulin activity in the adipogenic commitment of human bone marrow mesenchymal stromal cells. Int J Biochem Cell Biol. 2015:60:60-72. 43. Rui YF, Lui PP, Chan LS, Chan KM, Fu SC, Li G. Does erroneous differentiation of tendon-derived stem cells contribute to the pathogenesis of calcifying tendinopathy? Chin Med J (Engl). 2011:124:606-10. 44. Zhang J, Wang JH. The effects of mechanical loading on tendons--an in vivo and in vitro model study. PLoS One. 2013:8:e71740. 45. Zhang J, Wang JH. Moderate exercise mitigates the detrimental effects of aging on tendon stem cells. PLoS One. 2015:10:e0130454. 46. Collas P, Hakelien AM. Teaching cells new tricks. Trends Biotechnol. 2003:21:354-61. 47. Jopling C, Boue S, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation and reprogramming: Three routes to regeneration. Nat Rev Mol Cell Biol. 2011:12:79-89. 48. Nuttall ME, Patton AJ, Olivera DL, Nadeau DP, Gowen M. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: Implications for osteopenic disorders. J Bone Miner Res. 1998:13:371-82. 49. Ullah M, Stich S, Notter M, Eucker J, Sittinger M, Ringe J. Transdifferentiation of mesenchymal stem cells-derived adipogenic-differentiated cells into osteogenic- or chondrogenic-differentiated cells proceeds via dedifferentiation and have a correlation with cell cycle arresting and driving genes. Differentiation. 2013:85:78-90. 50. Ullah M, Sittinger M, Ringe J. Transdifferentiation of adipogenically differentiated cells into osteogenically or chondrogenically differentiated cells: Phenotype switching via dedifferentiation. Int J Biochem Cell Biol. 2014:46:124-37. 51. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006:126:663-76. 52. de Mos M, Koevoet WJ, Jahr H, Verstegen MM, Heijboer MP, Kops N, et al. Intrinsic differentiation potential of adolescent human tendon tissue: An in-vitro cell differentiation study. BMC Musculoskelet Disord. 2007:8:16. 53. Lui PP. Markers for the identification of tendon-derived stem cells in vitro and tendon stem cells in situ - update and future development. Stem Cell Res Ther. 2015:6:106. 54. Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, et al. Analysis of the tendon cell fate using scleraxis, a specific marker for tendons and ligaments. Development. 2001:128:3855-66. 55. Murchison ND, Price BA, Conner DA, Keene DR, Olson EN, Tabin CJ, et al. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development. 2007:134:2697-708. 56. Scott A, Sampaio A, Abraham T, Duronio C, Underhill TM. Scleraxis expression is coordinately regulated in a murine model of patellar tendon injury. J Orthop Res. 2011:29:289-96. 57. Alberton P, Popov C, Pragert M, Kohler J, Shukunami C, Schieker M, et al. Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells Dev. 2012:21:846-58. 58. Chen X, Yin Z, Chen JL, Liu HH, Shen WL, Fang Z, et al. Scleraxis-overexpressed human embryonic stem cell-derived mesenchymal stem cells for tendon tissue engineering with knitted silk-collagen scaffold. Tissue Eng Part A. 2014:20:1583-92. 59. Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med. 2011:39:1282-9. 60. Lejard V, Brideau G, Blais F, Salingcarnboriboon R, Wagner G, Roehrl MH, et al. Scleraxis and nfatc regulate the expression of the pro-alpha1(i) collagen gene in tendon fibroblasts. J Biol Chem. 2007:282:17665-75. 61. Shukunami C, Takimoto A, Oro M, Hiraki Y. Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol. 2006:298:234-47. 62. Ito Y, Toriuchi N, Yoshitaka T, Ueno-Kudoh H, Sato T, Yokoyama S, et al. The mohawk homeobox gene is a critical regulator of tendon differentiation. Proc Natl Acad Sci U S A. 2010:107:10538-42. 63. Liu W, Watson SS, Lan Y, Keene DR, Ovitt CE, Liu H, et al. The atypical homeodomain transcription factor mohawk controls tendon morphogenesis. Mol Cell Biol. 2010:30:4797-807. 64. Liu H, Zhang C, Zhu S, Lu P, Zhu T, Gong X, et al. Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the tgfbeta signaling pathway. Stem Cells. 2015:33:443-55. 65. Lejard V, Blais F, Guerquin MJ, Bonnet A, Bonnin MA, Havis E, et al. Egr1 and egr2 involvement in vertebrate tendon differentiation. J Biol Chem. 2011:286:5855-67. 66. Guerquin MJ, Charvet B, Nourissat G, Havis E, Ronsin O, Bonnin MA, et al. Transcription factor egr1 directs tendon differentiation and promotes tendon repair. J Clin Invest. 2013:123:3564-76. 67. Tao X, Liu J, Chen L, Zhou Y, Tang K. Egr1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair. Cell Physiol Biochem. 2015:35:699-709. 68. Screen HR, Berk DE, Kadler KE, Ramirez F, Young MF. Tendon functional extracellular matrix. J Orthop Res. 2015:33:793-9. 69. Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014:15:802-12. 70. Banos CC, Thomas AH, Kuo CK. Collagen fibrillogenesis in tendon development: Current models and regulation of fibril assembly. Birth Defects Res C Embryo Today. 2008:84:228-44. 71. Fleischmajer R, Olsen BR, Timpl R, Perlish JS, Lovelace O. Collagen fibril formation during embryogenesis. Proc Natl Acad Sci U S A. 1983:80:3354-8. 72. Williams IF, McCullagh KG, Silver IA. The distribution of types i and iii collagen and fibronectin in the healing equine tendon. Connect Tissue Res. 1984:12:211-27. 73. Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer TF. Collagen fibrillogenesis in vitro: Interaction of types i and v collagen regulates fibril diameter. J Cell Sci. 1990:95 ( Pt 4):649-57. 74. Peffers MJ, Thorpe CT, Collins JA, Eong R, Wei TK, Screen HR, et al. Proteomic analysis reveals age-related changes in tendon matrix composition, with age- and injury-specific matrix fragmentation. J Biol Chem. 2014:289:25867-78. 75. Izu Y, Ansorge HL, Zhang G, Soslowsky LJ, Bonaldo P, Chu ML, et al. Dysfunctional tendon collagen fibrillogenesis in collagen vi null mice. Matrix Biol. 2011:30:53-61. 76. Tzortzaki EG, Tischfield JA, Sahota A, Siafakas NM, Gordon MK, Gerecke DR. Expression of facit collagens xii and xiv during bleomycin-induced pulmonary fibrosis in mice. Anat Rec A Discov Mol Cell Evol Biol. 2003:275:1073-80. 77. Zhang G, Young BB, Birk DE. Differential expression of type xii collagen in developing chicken metatarsal tendons. J Anat. 2003:202:411-20. 78. Sugimoto Y, Takimoto A, Akiyama H, Kist R, Scherer G, Nakamura T, et al. Scx+/sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development. 2013:140:2280-8. 79. Lui PP, Fu SC, Chan LS, Hung LK, Chan KM. Chondrocyte phenotype and ectopic ossification in collagenase-induced tendon degeneration. J Histochem Cytochem. 2009:57:91-100. 80. Samiric T, Ilic MZ, Handley CJ. Characterisation of proteoglycans and their catabolic products in tendon and explant cultures of tendon. Matrix Biol. 2004:23:127-40. 81. Scott JE. Proteodermatan and proteokeratan sulfate (decorin, lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen. Biochemistry. 1996:35:8795-9. 82. Reed CC, Iozzo RV. The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconj J. 2002:19:249-55. 83. Ruhland C, Schonherr E, Robenek H, Hansen U, Iozzo RV, Bruckner P, et al. The glycosaminoglycan chain of decorin plays an important role in collagen fibril formation at the early stages of fibrillogenesis. FEBS J. 2007:274:4246-55. 84. Schonherr E, Witsch-Prehm P, Harrach B, Robenek H, Rauterberg J, Kresse H. Interaction of biglycan with type i collagen. J Biol Chem. 1995:270:2776-83. 85. Ameye L, Aria D, Jepsen K, Oldberg A, Xu T, Young MF. Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB J. 2002:16:673-80. 86. Gordon JA, Freedman BR, Zuskov A, Iozzo RV, Birk DE, Soslowsky LJ. Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model. J Biomech. 2015:48:2110-5. 87. Bianco P, Fisher LW, Young MF, Termine JD, Robey PG. Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues. J Histochem Cytochem. 1990:38:1549-63. 88. Yoon JH, Halper J. Tendon proteoglycans: Biochemistry and function. J Musculoskelet Neuronal Interact. 2005:5:22-34. 89. Jepsen KJ, Wu F, Peragallo JH, Paul J, Roberts L, Ezura Y, et al. A syndrome of joint laxity and impaired tendon integrity in lumican- and fibromodulin-deficient mice. J Biol Chem. 2002:277:35532-40. 90. Wang VM, Bell RM, Thakore R, Eyre DR, Galante JO, Li J, et al. Murine tendon function is adversely affected by aggrecan accumulation due to the knockout of adamts5. J Orthop Res. 2012:30:620-6. 91. Thorpe CT, Birch HL, Clegg PD, Screen HR. The role of the non-collagenous matrix in tendon function. Int J Exp Pathol. 2013:94:248-59. 92. Docheva D, Hunziker EB, Fassler R, Brandau O. Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol. 2005:25:699-705. 93. Alberton P, Dex S, Popov C, Shukunami C, Schieker M, Docheva D. Loss of tenomodulin results in reduced self-renewal and augmented senescence of tendon stem/progenitor cells. Stem Cells Dev. 2015:24:597-609. 94. Riley GP, Harrall RL, Cawston TE, Hazleman BL, Mackie EJ. Tenascin-c and human tendon degeneration. Am J Pathol. 1996:149:933-43. 95. Jarvinen TA, Jozsa L, Kannus P, Jarvinen TL, Hurme T, Kvist M, et al. Mechanical loading regulates the expression of tenascin-c in the myotendinous junction and tendon but does not induce de novo synthesis in the skeletal muscle. J Cell Sci. 2003:116:857-66. 96. Nemoto M, Kizaki K, Yamamoto Y, Oonuma T, Hashizume K. Tenascin-c expression in equine tendon-derived cells during proliferation and migration. J Equine Sci. 2013:24:17-24. 97. Pirog KA, Jaka O, Katakura Y, Meadows RS, Kadler KE, Boot-Handford RP, et al. A mouse model offers novel insights into the myopathy and tendinopathy often associated with pseudoachondroplasia and multiple epiphyseal dysplasia. Hum Mol Genet. 2010:19:52-64. 98. Sodersten F, Hultenby K, Heinegard D, Johnston C, Ekman S. Immunolocalization of collagens (i and iii) and cartilage oligomeric matrix protein in the normal and injured equine superficial digital flexor tendon. Connect Tissue Res. 2013:54:62-9. 99. Sun Y, Berger EJ, Zhao C, Jay GD, An KN, Amadio PC. Expression and mapping of lubricin in canine flexor tendon. J Orthop Res. 2006:24:1861-8. 100. Funakoshi T, Martin SD, Schmid TM, Spector M. Distribution of lubricin in the ruptured human rotator cuff and biceps tendon: A pilot study. Clin Orthop Relat Res. 2010:468:1588-99. 101. James R, Kesturu G, Balian G, Chhabra AB. Tendon: Biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am. 2008:33:102-12. 102. Lorda-Diez CI, Montero JA, Martinez-Cue C, Garcia-Porrero JA, Hurle JM. Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J Biol Chem. 2009:284:29988-96. 103. Pryce BA, Watson SS, Murchison ND, Staverosky JA, Dunker N, Schweitzer R. Recruitment and maintenance of tendon progenitors by tgfbeta signaling are essential for tendon formation. Development. 2009:136:1351-61. 104. Jiang C, Shao L, Wang Q, Dong Y. Repetitive mechanical stretching modulates transforming growth factor-beta induced collagen synthesis and apoptosis in human patellar tendon fibroblasts. Biochem Cell Biol. 2012:90:667-74. 105. Hou Y, Mao Z, Wei X, Lin L, Chen L, Wang H, et al. The roles of tgf-beta1 gene transfer on collagen formation during achilles tendon healing. Biochem Biophys Res Commun. 2009:383:235-9. 106. Kovacevic D, Fox AJ, Bedi A, Ying L, Deng XH, Warren RF, et al. Calcium-phosphate matrix with or without tgf-beta3 improves tendon-bone healing after rotator cuff repair. Am J Sports Med. 2011:39:811-9. 107. Berthet E, Chen C, Butcher K, Schneider RA, Alliston T, Amirtharajah M. Smad3 binds scleraxis and mohawk and regulates tendon matrix organization. J Orthop Res. 2013:31:1475-83. 108. Katzel EB, Wolenski M, Loiselle AE, Basile P, Flick LM, Langstein HN, et al. Impact of smad3 loss of function on scarring and adhesion formation during tendon healing. J Orthop Res. 2011:29:684-93. 109. Ahmed AS, Li J, Schizas N, Ahmed M, Ostenson CG, Salo P, et al. Expressional changes in growth and inflammatory mediators during achilles tendon repair in diabetic rats: New insights into a possible basis for compromised healing. Cell Tissue Res. 2014:357:109-17. 110. Aliodoust M, Bayat M, Jalili MR, Sharifian Z, Dadpay M, Akbari M, et al. Evaluating the effect of low-level laser therapy on healing of tentomized achilles tendon in streptozotocin-induced diabetic rats by light microscopical and gene expression examinations. Lasers Med Sci. 2014:29:1495-503. 111. Grahame Hardie D. Amp-activated protein kinase: A key regulator of energy balance with many roles in human disease. J Intern Med. 2014:276:543-59. 112. Wei J, Shimazu J, Makinistoglu MP, Maurizi A, Kajimura D, Zong H, et al. Glucose uptake and runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell. 2015:161:1576-91. 113. Feng Y, Liu JQ, Liu HC. Amp-activated protein kinase acts as a negative regulator of high glucose-induced rankl expression in human periodontal ligament cells. Chin Med J (Engl). 2012:125:3298-304. 114. Rothan HA, Suhaeb AM, Kamarul T. Recombinant human adiponectin as a potential protein for treating diabetic tendinopathy promotes tenocyte progenitor cells proliferation and tenogenic differentiation in vitro. Int J Med Sci. 2013:10:1899-906. 115. Deepa SS, Dong LQ. Appl1: Role in adiponectin signaling and beyond. Am J Physiol Endocrinol Metab. 2009:296:E22-36. 116. Cui Q, Fu S, Li Z. Hepatocyte growth factor inhibits tgf-beta1-induced myofibroblast differentiation in tendon fibroblasts: Role of ampk signaling pathway. J Physiol Sci. 2013:63:163-70. 117. Mohsenifar Z, Feridoni MJ, Bayat M, Masteri Farahani R, Bayat S, Khoshvaghti A. Histological and biomechanical analysis of the effects of streptozotocin-induced type one diabetes mellitus on healing of tenotomised achilles tendons in rats. Foot Ankle Surg. 2014:20:186-91. 118. Blodgett AB, Kothinti RK, Kamyshko I, Petering DH, Kumar S, Tabatabai NM. A fluorescence method for measurement of glucose transport in kidney cells. Diabetes Technol Ther. 2011:13:743-51. 119. Chen Y, Zhang J, Zhang XY. 2-nbdg as a marker for detecting glucose uptake in reactive astrocytes exposed to oxygen-glucose deprivation in vitro. J Mol Neurosci. 2015:55:126-30. 120. Xuan YH, Huang BB, Tian HS, Chi LS, Duan YM, Wang X, et al. High-glucose inhibits human fibroblast cell migration in wound healing via repression of bfgf-regulating jnk phosphorylation. PLoS One. 2014:9:e108182. 121. Kato H, Taguchi Y, Tominaga K, Kimura D, Yamawaki I, Noguchi M, et al. High glucose concentrations suppress the proliferation of human periodontal ligament stem cells and their differentiation into osteoblasts. J Periodontol. 2016:87:e44-51. 122. Wang D, Guan MP, Zheng ZJ, Li WQ, Lyv FP, Pang RY, et al. Transcription factor egr1 is involved in high glucose-induced proliferation and fibrosis in rat glomerular mesangial cells. Cell Physiol Biochem. 2015:36:2093-107. 123. Liang M, Cornell HR, Zargar Baboldashti N, Thompson MS, Carr AJ, Hulley PA. Regulation of hypoxia-induced cell death in human tenocytes. Adv Orthop. 2012:2012:984950. 124. Scioli MG, Cervelli V, Arcuri G, Gentile P, Doldo E, Bielli A, et al. High insulin-induced down-regulation of erk-1/igf-1r/fgfr-1 signaling is required for oxidative stress-mediated apoptosis of adipose-derived stem cells. J Cell Physiol. 2014:229:2077-87. 125. Alikhani Z, Alikhani M, Boyd CM, Nagao K, Trackman PC, Graves DT. Advanced glycation end products enhance expression of pro-apoptotic genes and stimulate fibroblast apoptosis through cytoplasmic and mitochondrial pathways. J Biol Chem. 2005:280:12087-95. 126. Li Y, Fessel G, Georgiadis M, Snedeker JG. Advanced glycation end-products diminish tendon collagen fiber sliding. Matrix Biol. 2013:32:169-77. 127. Wu Y, Lu H, Yang H, Li C, Sang Q, Liu X, et al. Zinc stimulates glucose consumption by modulating the insulin signaling pathway in l6 myotubes: Essential roles of akt-glut4, gsk3beta and mtor-s6k1. J Nutr Biochem. 2016:34:126-35. 128. Tamilselvan B, Seshadri KG, Venkatraman G. Role of vitamin d on the expression of glucose transporters in l6 myotubes. Indian J Endocrinol Metab. 2013:17:S326-8. 129. Guo YN, Wang JC, Cai GY, Hu X, Cui SY, Lv Y, et al. Ampk-mediated downregulation of connexin43 and premature senescence of mesangial cells under high-glucose conditions. Exp Gerontol. 2014:51:71-81. 130. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, et al. Characterization of the amp-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates amp-activated protein kinase. J Biol Chem. 1996:271:27879-87. 131. Valentine RJ, Coughlan KA, Ruderman NB, Saha AK. Insulin inhibits ampk activity and phosphorylates ampk ser(4)(8)(5)/(4)(9)(1) through akt in hepatocytes, myotubes and incubated rat skeletal muscle. Arch Biochem Biophys. 2014:562:62-9. 132. Deng HP, Chai JK, Shen CA, Zhang XB, Ma L, Sun TJ, et al. Insulin down-regulates the expression of ubiquitin e3 ligases partially by inhibiting the activity and expression of amp-activated protein kinase in l6 myotubes. Biosci Rep. 2015:35. 133. Chuang CC, Yang RS, Tsai KS, Ho FM, Liu SH. Hyperglycemia enhances adipogenic induction of lipid accumulation: Involvement of extracellular signal-regulated protein kinase 1/2, phosphoinositide 3-kinase/akt, and peroxisome proliferator-activated receptor gamma signaling. Endocrinology. 2007:148:4267-75. 134. Berasi SP, Huard C, Li D, Shih HH, Sun Y, Zhong W, et al. Inhibition of gluconeogenesis through transcriptional activation of egr1 and dusp4 by amp-activated kinase. J Biol Chem. 2006:281:27167-77. 135. Hann SS, Tang Q, Zheng F, Zhao S, Chen J, Wang Z. Repression of phosphoinositide-dependent protein kinase 1 expression by ciglitazone via egr-1 represents a new approach for inhibition of lung cancer cell growth. Mol Cancer. 2014:13:149. 136. Liu C, Adamson E, Mercola D. Transcription factor egr-1 suppresses the growth and transformation of human ht-1080 fibrosarcoma cells by induction of transforming growth factor beta 1. Proc Natl Acad Sci U S A. 1996:93:11831-6. 137. Tang M, Zhang W, Lin H, Jiang H, Dai H, Zhang Y. High glucose promotes the production of collagen types i and iii by cardiac fibroblasts through a pathway dependent on extracellular-signal-regulated kinase 1/2. Mol Cell Biochem. 2007:301:109-14. 138. Connizzo BK, Bhatt PR, Liechty KW, Soslowsky LJ. Diabetes alters mechanical properties and collagen fiber re-alignment in multiple mouse tendons. Ann Biomed Eng. 2014:42:1880-8. 139. Volper BD, Huynh RT, Arthur KA, Noone J, Gordon BD, Zacherle EW, et al. Influence of acute and chronic streptozotocin-induced diabetes on the rat tendon extracellular matrix and mechanical properties. Am J Physiol Regul Integr Comp Physiol. 2015:309:R1135-43. 140. Majewski M, Porter RM, Betz OB, Betz VM, Clahsen H, Fluckiger R, et al. Improvement of tendon repair using muscle grafts transduced with tgf-beta1 cdna. Eur Cell Mater. 2012:23:94-101; discussion -2. 141. Goodier HC, Carr AJ, Snelling SJ, Roche L, Wheway K, Watkins B, et al. Comparison of transforming growth factor beta expression in healthy and diseased human tendon. Arthritis Res Ther. 2016:18:48. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49667 | - |
| dc.description.abstract | 背景與目的:肌腱病變是糖尿病常見的併發症之一,糖尿病人的肌腱組織呈現增厚、膠原纖維排列紊亂或鈣化等特徵,產生力學特性較差、受傷機率較高、傷後修復能力較弱等問題。這些問題可能起因於糖尿病生理環境對細胞造成不良影響,其中包含重要基因如轉錄因子、生長因子、與基質分子表現量的改變。本研究目的是探討糖尿病與肌腱病變共病的病理機制,以體外糖尿病模擬環境培養肌腱細胞,探討各種標記基因表現及分子機制,以了解糖尿病肌腱組織退化的原因。研究方法:利用不同葡萄糖濃度 (5.5、25 mM) 的培養液與胰島素 (30 μg/mL),培養 8 週大 SD 大鼠阿基里氏腱的肌腱細胞一至二週,進行下列實驗:以 MTT 試劑分析細胞增生;JC-1 試劑、Caspase 3/7 活性測試與 TUNEL 法分析細胞凋亡;2-NBDG 攝取測試與葡萄糖濃度計量分析,探討細胞對於葡萄糖的攝取與消耗;qRT-PCR 分析各種肌腱重要基因,包含轉錄因子 Scx、Mkx、Egr1,與生長因子 TGF-βs,以及基質分子 Col1a1、Col1a2、Tnmd、Tn-C、Dcn、Bgn 的基因表現,並利用 siRNA 驗證轉錄因子的調控角色;利用西方墨點法分析 AMPK 訊息傳遞路徑的活化情形,並以 AMPK 抑制劑驗證 AMPK 對於基因的調控作用。結果:肌腱細胞在兩週的培養期間,生長與凋亡皆不受葡萄糖或胰島素影響,高糖環境能促進細胞對於葡萄糖的攝取與消耗,加入胰島素則葡萄糖消耗量更高。高糖環境培養 14 天會導致轉錄因子 Mkx、Egr1、生長因子 TGF-β1、基質分子 Bgn 表現減低;加入胰島素會導致 Egr1、TGF-β1 表現提前在第 7 天下降,並造成 Scx、Col1a1 表現下降。以 siRNA 抑制 Egr1 表現會導致下游生長因子 TGF-β1、基質分子 Col1a1、Col1a2、Bgn 表現減低,顯示 Egr1 對於肌腱相關基因表現的重要性。以 Compound C 抑制在低糖環境活性較高的 AMPK 訊息,會導致 Egr1、Scx、TGF-β1、Col1a1、Col1a2、Bgn 表現量皆下降,顯示 AMPK 參與調控糖尿病環境中相關基因的變化。結論:本研究發現高糖環境中 AMPK 活性受到抑制,轉錄因子 Egr1 表現減低,導致下游 TGF-β1 與 Bgn 基因表現減低,顯示 AMPK-Egr1 是維持肌腱細胞恆定的重要訊息。高糖透過AMPK-Egr1抑制,導致生長因子與基質分子表現下降,可能是造成糖尿病肌腱病變的機轉,本研究結果有助於發展糖尿病肌腱病變預防與治療策略。 | zh_TW |
| dc.description.abstract | Background: Previous studies have shown strong evidence that diabetes is associated with higher risk of tendinopathy. Diabetic tendinopathy is a complex pathology that reduces tolerance to exercise and functional activities affecting lifestyle and glycemic control. However, the molecular mechanisms of diabetic tendinopathy remained to be investigated. The study aims to investigate the pathomechanisms of diabetic tendinopathy using in vitro diabetes-mimicking culture condition, and to further investigate the effects of glucose concentrations on the regulation of tendon-related genes and tenocyte metabolism. Methods: Tenocytes harvested from Achilles tendons of Sprague-Dawley rats (8 weeks old, weighing 250–300g) were used in this study. Two glucose concentrations [5.5 mM (LG) or 25 mM (HG)] and insulin (30 μg/mL) in culture medium were administered to monolayer culture of tenocytes. Glucose uptake and consumption by tenocytes was measured by 2-NBDG fluorescent indicator and medium glucose meter, respectively. Tenocytes viability and proliferation were assayed by colorimetric MTT (Tetrazolium) assay. Tenocytes apoptosis was analyzed by JC-1 assay, caspase activity assay, and TUNEL assay. The gene expression level of tenogenic transcription factors Scx, Mkx and Egr1, transforming growth factor-βs (TGF-βs), and matrix proteins Col1a1, Col1a2, Tnmd, Tn-C, Dcn, and Bgn were assayed by qRT-PCR. Mkx and Egr1 were knocked down by siRNA to analyze the functions of Mkx and Egr1 in TGF-β1 expression. Western blotting was performed to measure the activity of AMPK. Compound C was used to block AMPK activation, and changes in mRNA expression of target genes were examined. Results: Neither glucose nor insulin altered tenocyte proliferation or apoptosis during two-week culture. It was found that glucose uptake into tenocyte and medium glucose consumption were both increased in high glucose condition (HG), where the medium glucose consumption was further enhanced by insulin. HG significantly attenuated Mkx and Egr1 expression, but not Scx, and further decreased TGF-β1 and Bgn expression at day 14. Similar effects on Mkx, Egr1, TGF-β1, and Bgn were found in HG with insulin. Down-regulation of Egr1 by siRNA decreased Scx, Mkx, TGF-β1, Col1a1, Col1a2, and Bgn expression. In addition, blocking AMPK activation with Compound C down-regulated the expression of Egr1, TGF-β1, Col1a1, Col1a2, and Bgn in LG condition. Discussion and Conclusion: Our study demonstrated that high glucose concentration altered tendon homeostasis through down-regulation of Egr1, and downstream TGF-β1 and Bgn expression. The AMPK signaling pathways may be involved in the progression of diabetic tendinopathy. The present study may help understand the pathomechanisms and further develop preventive and therapeutic strategies for diabetic tendinopathy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:40:50Z (GMT). No. of bitstreams: 1 ntu-105-R02b22012-1.pdf: 8829239 bytes, checksum: 9c2469707651b603c0a6660c7d8789be (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii 英文摘要 v 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 1 第二章 文獻探討 2 2.1. 肌腱組織與細胞 2 2.1.1. 肌腱構造介紹 2 2.1.2. 肌腱內的細胞族群 3 2.2. 糖尿病對肌腱組織的影響 5 2.2.1. 概述糖尿病人的肌腱 5 2.2.2. 醫學影像與組織學的發現 6 2.2.3. 糖尿病環境與細胞分子生物學的發現 7 2.2.3.1. 高濃度葡萄糖 7 2.2.3.2. 高濃度胰島素 9 2.3. 細胞分化與肌腱相關分子 10 2.3.1. 概述細胞分化 10 2.3.2. 轉錄因子 11 2.3.2.1. Scleraxis (Scx) 11 2.3.2.2. Mohawk (Mkx) 13 2.3.2.3. Early growth response transcription factor 1 (Egr1) 14 2.3.3. 肌腱基質分子 15 2.3.3.1. 膠原蛋白 15 2.3.3.2. 蛋白聚醣 17 2.3.3.3. 醣蛋白 19 2.3.3.4. 彈性纖維 20 2.3.4. 轉化生長因子-β (TGF-β) 21 2.3.5. AMP-activated protein kinase (AMPK) 訊息路徑 23 第三章 材料與方法 25 3.1. 實驗設計 25 3.2. 實驗試藥 28 3.3. 實驗方法 33 3.3.1. 肌腱細胞培養 (Cell culture) 33 3.3.2. 細胞活性分析 (MTT assay) 35 3.3.3. 細胞凋亡分析 36 3.3.3.1. 粒線體膜電位分析 (JC-1 assay) 36 3.3.3.2. Caspase 3/7 活性測試 36 3.3.3.3. TUNEL assay 37 3.3.4. 葡萄糖攝取能力分析 (2-NBDG uptake assay) 39 3.3.5. 葡萄糖消耗量分析 41 3.3.6. 即時定量聚合酶連鎖反應 (qRT-PCR) 43 3.3.6.1. Total RNA 萃取 43 3.3.6.2. Total RNA 含量及品質分析 43 3.3.6.3. 反轉錄合成 cDNA 44 3.3.6.4. 即時定量聚合酶連鎖反應 (qRT-PCR) 45 3.3.7. RNA 干擾基因沉默反應 48 3.3.8. 西方墨點法 (Western blotting) 50 3.3.8.1. 蛋白質萃取 50 3.3.8.2. Bradford 蛋白質定量 50 3.3.8.3. 膠體電泳 50 3.3.8.4. 蛋白質轉印與免疫呈色 51 3.3.9. 統計分析 54 第四章 結果 55 4.1 細胞活性分析 (MTT assay) 55 4.2 細胞凋亡分析 57 4.2.1 粒線體膜電位分析 (JC-1 assay) 57 4.2.2 Caspase 3/7 活性測試 60 4.2.3 TUNEL assay 62 4.3 葡萄糖攝取與消耗 64 4.3.1 葡萄糖攝取能力分析 (2-NBDG assay) 64 4.3.2 葡萄糖通道蛋白基因表現 67 4.3.3 葡萄糖消耗量 70 4.4 葡萄糖對基因表現之影響 72 4.4.1 葡萄糖對轉錄因子表現之影響 72 4.4.2 葡萄糖對 TGF-β 生長因子表現之影響 75 4.4.3 葡萄糖對肌腱基質分子表現之影響 78 4.5 胰島素對基因表現之影響 81 4.5.1 胰島素對肌腱相關轉錄因子表現之影響 81 4.5.2 胰島素對TGF-β 生長因子表現之影響 84 4.5.3 胰島素對基質分子表現之影響 87 4.6 葡萄糖對 Mkx、Egr1、Tgfb1 基因表現影響之時序分析 91 4.7 轉錄因子 Mkx 與 Egr1 基因沉默對基因表現的影響 93 4.7.1 轉染效率與細胞觀察 93 4.7.2 siMkx 對基因表現的影響 95 4.7.3 siEgr1 對基因表現的影響 96 4.8 AMPK 訊息活化情形 98 4.8.1 葡萄糖對於 AMPK 訊息活化的影響 98 4.8.2 胰島素對於 AMPK 訊息活化的影響 100 4.9 抑制 AMPK 訊息對於基因表現的影響 102 4.9.1 Compound C 對於 AMPK 活性的抑制效果 102 4.9.2 Compound C 對於基因表現的影響 104 第五章 討論 106 第六章 結論 116 參考文獻 118 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肌腱細胞 | zh_TW |
| dc.subject | 糖尿病 | zh_TW |
| dc.subject | 葡萄糖 | zh_TW |
| dc.subject | 胰島素 | zh_TW |
| dc.subject | 肌腱病變 | zh_TW |
| dc.subject | glucose | en |
| dc.subject | diabetes | en |
| dc.subject | tenocyte | en |
| dc.subject | tendinopathy | en |
| dc.subject | insulin | en |
| dc.title | 體外糖尿病模擬環境對肌腱細胞分化與代謝的影響 | zh_TW |
| dc.title | The Effect of In Vitro Diabetes-mimicking Environment on Tenocyte Differentiation and Metabolism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王興國 | |
| dc.contributor.oralexamcommittee | 孫瑞昇,張弘偉 | |
| dc.subject.keyword | 糖尿病,葡萄糖,胰島素,肌腱病變,肌腱細胞, | zh_TW |
| dc.subject.keyword | diabetes,glucose,insulin,tendinopathy,tenocyte, | en |
| dc.relation.page | 134 | |
| dc.identifier.doi | 10.6342/NTU201602683 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
| 顯示於系所單位: | 物理治療學系所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 8.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
