Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49660
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江伯倫(Bor-Luen Chiang)
dc.contributor.authorYa-Ju Hanen
dc.contributor.author韓雅如zh_TW
dc.date.accessioned2021-06-15T11:40:25Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citationAbdi, R., Fiorina, P., Adra, C. N., Atkinson, M., & Sayegh, M. H. (2008). Immunomodulation by mesenchymal stem cells a potential therapeutic strategy for type 1 diabetes. Diabetes, 57(7), 1759-1767.
Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815-1822.
Ailhaud, G., & Hauner, H. (2004). Development of white adipose tissue. Handbook of Obesity: Etiology and Pathophysiology, Second Edition, 481-514.
Ambati, S., Kim, H. K., Yang, J. Y., Lin, J., Della-Fera, M. A., & Baile, C. A. (2007). Effects of leptin on apoptosis and adipogenesis in 3T3-L1 adipocytes. Biochemical Pharmacology, 73(3), 378-384. doi:10.1016/j.bcp.2006.10.009
Anjos-Afonso, F., & Bonnet, D. (2007). Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood, 109(3), 1298-1306.
Anzalone, R., Iacono, M. L., Loria, T., Di Stefano, A., Giannuzzi, P., Farina, F., et al. (2011). Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Reviews and Reports, 7(2), 342-363.
Augello, A., Kurth, T. B., & De Bari, C. (2010). Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. eCells & Materials Journal, 20, 121-133.
Augello, A., Tasso, R., Negrini, S. M., Amateis, A., Indiveri, F., Cancedda, R., et al. (2005). Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. European Journal of Immunology, 35(5), 1482-1490.
Bengestrate, L., Virtue, S., Campbell, M., Vidal-Puig, A., Hadaschik, D., Hahn, P., et al. (2011). Genome-wide profiling of microRNAs in adipose mesenchymal stem cell differentiation and mouse models of obesity. PLoS One, 6(6), e21305.
Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641-650.
Caplan, A. I., & Bruder, S. P. (2001). Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in Molecular Medicine, 7(6), 259-264.
Catalán, V., Gómez-Ambrosi, J., Rodríguez, A., & Frühbeck, G. (2014). Adipose tissue immunity and cancer. Advances in Systems Immunology and Cancer, 17.
Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V. B., et al. (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133(6), 1106-1117.
Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107(1), 367-372.
Dalmas, E., Clément, K., & Guerre-Millo, M. (2011). Defining macrophage phenotype and function in adipose tissue. Trends in Immunology, 32(7), 307-314.
de Witte, S. F., Franquesa, M., Baan, C. C., & Hoogduijn, M. J. (2015). Toward development of imesenchymal stem cells for immunomodulatory therapy. Frontiers in Immunology, 6, 648. doi:10.3389/fimmu.2015.00648
Delaigle, A. l. M., Jonas, J.-C., Bauche, I. B., Cornu, O., & Brichard, S. M. (2004). Induction of adiponectin in skeletal muscle by inflammatory cytokines: in vivo and in vitro studies. Endocrinology, 145(12), 5589-5597.
Devine, S. M., & Hoffman, R. (2000). Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Current Opinion in Hematology, 7(6), 358-363.
Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838-3843.
Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., et al. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102(10), 3837-3844.
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317.
Fantuzzi, G. (2005). Adipose tissue, adipokines, and inflammation. Journal of Allergy and Clinical Immunology, 115(5), 911-919.
Fiorina, P., Jurewicz, M., Augello, A., Vergani, A., Dada, S., La Rosa, S., et al. (2009). Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. The Journal of Immunology, 183(2), 993-1004.
Friedenstein, A., Chailakhjan, R., & Lalykina, K. (1970). The development of fibroblast colonies in monolayer cultures of guinea‐pig bone marrow and spleen cells. Cell Proliferation, 3(4), 393-403.
Friedenstein, A. J., Gorskaja, J., & Kulagina, N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 4(5), 267-274.


Gainsford, T., Willson, T. A., Metcalf, D., Handman, E., McFarlane, C., Ng, A., et al. (1996). Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proceedings of the National Academy of Sciences, 93(25), 14564-14568.
Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W.-F., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105(7), 2821-2827.
Haddad, R., & Saldanha-Araujo, F. (2014). Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: what do we know so far? BioMed Research International, 2014, 216806. doi:10.1155/2014/216806
Jiang, C., Kim, J. H., Li, F., Qu, A., Gavrilova, O., Shah, Y. M., et al. (2013). Hypoxia-inducible factor 1alpha regulates a SOCS3-STAT3-adiponectin signal transduction pathway in adipocytes. The Journal of Biological Chemistry, 288(6), 3844-3857. doi:10.1074/jbc.M112.426338
Kloting, N., & Bluher, M. (2014). Adipocyte dysfunction, inflammation and metabolic syndrome. Reviews in Endocrine and Metabolic Disorders, 15(4), 277-287. doi:10.1007/s11154-014-9301-0
Krampera, M., Cosmi, L., Angeli, R., Pasini, A., Liotta, F., Andreini, A., et al. (2006). Role for interferon‐γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 24(2), 386-398.
La Cava, A., & Matarese, G. (2004). The weight of leptin in immunity. Nature Reviews Immunology, 4(5), 371-379.
Lord, G. M., Matarese, G., Howard, J. K., Baker, R. J., Bloom, S. R., & Lechler, R. I. (1998). Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature, 394(6696), 897-901.
Matsuzaki, Y., Mabuchi, Y., & Okano, H. (2014). Leptin receptor makes its mark on MSCs. Cell Stem Cell, 15(2), 112-114. doi:10.1016/j.stem.2014.07.001
Meisel, R., Brockers, S., Heseler, K., Degistirici, Ö., Bülle, H., Woite, C., et al. (2011). Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2, 3-dioxygenase. Leukemia, 25(4), 648-654.
Mo, M., Wang, S., Zhou, Y., Li, H., & Wu, Y. (2016). Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential. Cellular and Molecular Life Sciences. doi:10.1007/s00018-016-2229-7
Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110(10), 3499-3506. doi:10.1182/blood-2007-02-069716

Olefsky, J. M., & Glass, C. K. (2010). Macrophages, inflammation, and insulin resistance. Annual Review of Physiology, 72, 219-246.
Otto, T. C., & Lane, M. D. (2005). Adipose development: from stem cell to adipocyte. Critical Reviews in Biochemistry and Molecular Biology, 40(4), 229-242.
Peister, A., Mellad, J. A., Larson, B. L., Hall, B. M., Gibson, L. F., & Prockop, D. J. (2004). Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood, 103(5), 1662-1668.
Perrier, S., Darakhshan, F., & Hajduch, E. (2006). IL‐1 receptor antagonist in metabolic diseases: Dr Jekyll or Mr Hyde? FEBS Letters, 580(27), 6289-6294.
Piñeiro, R., Iglesias, M. J., Gallego, R., Raghay, K., Eiras, S., Rubio, J., et al. (2005). Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS Letters, 579(23), 5163-5169.
Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143-147.
Ren, G., Su, J., Zhang, L., Zhao, X., Ling, W., L'huillie, A., et al. (2009). Species variation in the mechanisms of mesenchymal stem cell‐mediated immunosuppression. Stem Cells, 27(8), 1954-1962.
Ren, G., Zhao, X., Zhang, L., Zhang, J., L'Huillier, A., Ling, W., et al. (2010). Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. The Journal of Immunology, 184(5), 2321-2328.
Rodriguez, A. M., Elabd, C., Delteil, F., Astier, J., Vernochet, C., Saint-Marc, P., et al. (2004). Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochemical and Biophysical Research Communications, 315(2), 255-263. doi:10.1016/j.bbrc.2004.01.053
Romieu-Mourez, R., Coutu, D., & Galipeau, J. (2011). The immune plasticity of mesenchymal stromal cells from mice and men: concordances and discrepancies. Frontiers in Bioscience (Elite edition), 4, 824-837.
Rosen, E. D., & Spiegelman, B. M. (2000). Molecular regulation of adipogenesis. Annual Review of Cell and Developmental Biology, 16(1), 145-171.
Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology, 164(2), 247-256.

Schwartz, R. E., Reyes, M., Koodie, L., Jiang, Y., Blackstad, M., Lund, T., et al. (2002). Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. The Journal of Clinical Investigation, 109(10), 1291-1302.
Shapiro, H., Pecht, T., Shaco-Levy, R., Harman-Boehm, I., Kirshtein, B., Kuperman, Y., et al. (2013). Adipose tissue foam cells are present in human obesity. The Journal of Clinical Endocrinology & Metabolism, 98(3), 1173-1181.
Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 24(1), 74-85.
Student, A. K., Hsu, R., & Lane, M. (1980). Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. Journal of Biological Chemistry, 255(10), 4745-4750.
Su, J., Chen, X., Huang, Y., Li, W., Li, J., Cao, K., et al. (2014). Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death & Differentiation, 21(3), 388-396.
Tartaglia, L. A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., et al. (1995). Identification and expression cloning of a leptin receptor, OB-R. Cell, 83(7), 1263-1271.
Tilg, H., & Moschen, A. R. (2006). Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nature Reviews Immunology, 6(10), 772-783. doi:10.1038/nri1937
Tsang, J. Y., Li, D., Ho, D., Peng, J., Xu, A., Lamb, J., et al. (2011). Novel immunomodulatory effects of adiponectin on dendritic cell functions. International Immunopharmacology, 11(5), 604-609. doi:10.1016/j.intimp.2010.11.009
Wilson, A., & Trumpp, A. (2006). Bone-marrow haematopoietic-stem-cell niches. Nature Reviews Immunology, 6(2), 93-106.
Wolf, A. M., Wolf, D., Avila, M. A., Moschen, A. R., Berasain, C., Enrich, B., et al. (2006). Up-regulation of the anti-inflammatory adipokine adiponectin in acute liver failure in mice. Journal of Hepatology, 44(3), 537-543.
Wu, D., Molofsky, A. B., Liang, H.-E., Ricardo-Gonzalez, R. R., Jouihan, H. A., Bando, J. K., et al. (2011). Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science, 332(6026), 243-247
.
Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., et al. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 423(6941), 762-769.

Yu, L., Tu, Q., Han, Q., Zhang, L., Sui, L., Zheng, L., et al. (2015). Adiponectin regulates bone marrow mesenchymal stem cell niche through a unique signal transduction pathway: an approach for treating bone disease in diabetes. Stem Cells, 33(1), 240-252. doi:10.1002/stem.1844
Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G., & Morrison, S. J. (2014). Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell, 15(2), 154-168.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49660-
dc.description.abstract小鼠骨髓間葉幹細胞具有免疫調節與多向分化潛能,可分化為易誘發炎症的脂肪細胞。3T3-L1 脂肪前驅細胞為目前常用於脂肪細胞研究的模型。瘦素為促進發炎的脂肪細胞激素,能抑制脂肪分化以及促進 T 淋巴細胞增生反應。本研究將瘦素加入小鼠骨髓間葉幹細胞與 3T3-L1 脂肪前驅細胞,探討瘦素對於兩者分化能力的影響。首先,將所培養之小鼠骨髓間葉幹細胞進行表面抗原、分化能力與免疫抑制能力的鑑定。以流式細胞技術鑑定間葉幹細胞表面抗原,實驗結果指出有表現CD29、CD73、CD105 和 Sca1,不表現 CD44、CD34、CD11b、B220 與 CD90.2。將間葉幹細胞分別培養於脂肪分化培養液、硬骨分化培養液以及軟骨分化培養液,並以 Oil Red O、Alizarin Red S 和 Alcian Blue 染色,確認具有分化能力。將小鼠骨髓間葉幹細胞與經由抗體 CD3ε/28 刺激後的 T 淋巴細胞混合培養,實驗結果發現間葉幹細胞可有效抑制 T 淋巴細胞的增生。接著,將小鼠骨髓間葉幹細胞和3T3-L1 脂肪前驅細胞施予瘦素,進行酵素免疫分析實驗,測定 IL-1RA 與 IL-6 的表現量,並測定兩者施予瘦素後的脂肪分化能力。本研究中所施予瘦素的濃度均無細胞毒性。酵素免疫分析實驗結果指出,IL-6 沒有在範圍內、沒有表現,僅有加入1000ng/mL 的瘦素至間葉幹細胞的組別,其 IL-1RA 分泌量有顯著下降趨勢,其餘組別沒有顯著影響。而分化能力實驗結果指出,施予 100ng/mL、1000ng/mL的瘦素、培養 14 天的間葉幹細胞;以及施予 10-8M、10-6M 的瘦素、培養 8 天的3T3-L1 脂肪前驅細胞,兩者上機測定 Oil red O 於 510nm 的吸光值與未加入瘦素的對照組吸光值相比,其吸光值下降,脂肪分化能力下降。本研究推論,瘦素有較大趨勢影響細胞走向發炎反應,但不走向脂肪分化。與瘦素互為拮抗的脂肪細胞激素為脂聯素,兩者對於在肥胖相關疾病當中,交互作用尚未非常明瞭,未來可再探討是否會進一步影響間葉幹細胞的免疫調節。本研究將瘦素加入間葉幹細胞與3T3-L1 脂肪前驅細胞,探討對於分化的影響,對於未來間葉幹細胞脂肪分化機制與分化過程中的發炎走向,可做為臨床應用之參考。zh_TW
dc.description.abstractMouse mesenchymal stem cells (MSCs), which could differentiate into adipocytes, have the characterization of immune regulation and multi-lineage differentiation potential. 3T3-L1 cells is used in biological research on adipose tissue. Leptin is an adipokine, secreted by adipocytes, which could induce inflammation, inhibit adipogenesis and promote the T cell proliferation. In this research, we treated MSCs and 3T3-L1 cells with leptin to investigate the effect of differentiation ability. At first, we confirm the surface markers, differentiation ability, and immune regulation ability of the MSCs. The flow data shows the positive surface markers are CD29, CD73, CD105 and Sca1 while the negative surface markers are CD44, CD34, CD11b, B220 and CD90.2. MSCs cultured in adipogenic medium, osteogenic medium, and chondrogenic medium, were stained with the Oil Red O, Alizarin Red S, and Alcian Blue, respectively. Data shows the MSCs have the differentiation ability. Through the stimulation of the antibody CD3ε/28 and co-culturing the MSCs with the T cells, the mesenchymal stem cells could effectively inhibit the proliferation of the T cells. Then, treated mouse mesenchymal stem cells and 3T3-L1 cells with leptin, assayed the level of IL-1RA and IL-6 by ELISA, and assayed the adipogenic ability. In this research, the concentration of leptin is non-cytotoxic. The ELISA data shows IL-6 is not detected. IL-1RA is significant decreased while the MSCs treated with 1000ng/mL leptin, however, other groups have no effects. Compared to the control group, the OD value for Oil red O at 510nm of the MSCs (treated with 100ng/mL, 1000ng/mL for 14 days) and the 3T3-L1 cells (treated with 10-8M、10-6M for 8 day), are decreased and the adipogenic ability are also decreased. This research suggested that the leptin have a tendency to induce an inflammatory response, but not to the adipogenesis. In this study, treating mesenchymal stem cells and 3T3-L1 cells with leptin to investigate the effect of the differentiation, could be used as the clinical application of the mechanism and inflammation during differentiation of mesenchymal stem cells in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:40:25Z (GMT). No. of bitstreams: 1
ntu-105-R02450012-1.pdf: 1827655 bytes, checksum: 9cbf19b9babf7d43f9483a9d348d188a (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………………i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 viii
第一章 文獻回顧……………………………………………………………………...1
1.1 間葉幹細胞(Mesenchymal stem cells,MSCs) 2
1.1.1 間葉幹細胞命名、定義、特性 2
1.1.2 間葉幹細胞的免疫調節特性(immunoregulatory function) 3
1.1.3 間葉幹細胞與T細胞間的免疫調節 4
1.1.4 間葉幹細胞與B細胞間的免疫調節 5
1.1.5 間葉幹細胞與自然殺手細胞間的免疫調節 6
1.1.6 間葉幹細胞與樹突細胞間的免疫調節 6
1.2 3T3-L1脂肪前驅細胞(Pre-adipocytes) 7
1.2.1 3T3-L1脂肪前驅細胞命名、定義、特性 7
1.2.2 3T3-L1脂肪前驅細胞的脂肪分化 7
1.3 脂肪細胞(Adipocytes) 8
1.3.1 慢性組織發炎與肥胖 8
1.3.2 脂肪細胞激素(adipokine) 8
1.3.3 脂肪分化(Adipogenesis) 9
1.4 瘦素(Leptin) 9
1.5 介白素-1受體拮抗蛋白(IL-1RA)與介白素-6(IL-6) 10
1.6 研究目的 10
第二章 實驗材料與研究方法……………………………………………………….11
2.1 實驗動物與實驗細胞 17
2.2 實驗藥劑 17
2.3 間葉幹細胞之分離與培養、繼代 19
2.4 間葉幹細胞表面抗原之鑑定 19
2.5 間葉幹細胞之脂肪分化、硬骨分化、軟骨分化 20
2.6 T淋巴細胞增生檢驗與3H-thymidine incorporation assay 20
2.7 3T3-L1脂肪前驅細胞之解凍、培養與脂肪分化 21
2.8 脂肪分化程度的測定 21
2.9 細胞毒性測試 21
2.10 酵素免疫分析法(ELISA) 22
2.11 細胞計數 22
2.12 統計分析 22
第三章 研究結果…………………………………………………………………….23
3.1 間葉幹細胞的培養、細胞型態與功能 24
3.2 脂肪前驅細胞的培養與脂肪分化 25
3.3 瘦素對於間葉幹細胞與3T3-L1 脂肪前驅細胞的毒性測試 25
3.4 加入瘦素後,對於間葉幹細胞與3T3-L1脂肪前驅細胞,其促發炎或是抗發炎細胞激素的變化。以IL-1RA與IL-6為例。 25
3.5 瘦素對於間葉幹細胞與3T3-L1脂肪前驅細胞分化之影響 26
第四章 討論與結論………………………………………………………………….27
4.1 小鼠間葉幹細胞與人類間葉幹細胞上表面抗原的比較 28
4.2 3T3-L1脂肪前驅細胞為本實驗的對照組 28
4.3 瘦素與脂聯素在脂肪分化與免疫抑制的比較 28
4.4 脂肪細胞激素-脂聯素 29
4.5 結論 30
第五章 參考文獻…………………………………………………………………….31
第六章 圖…………………………………………………………………………….38
dc.language.isozh-TW
dc.subject脂聯素zh_TW
dc.subject間葉幹細胞zh_TW
dc.subject3T3-L1 脂肪前驅細胞zh_TW
dc.subject脂肪細胞zh_TW
dc.subject脂肪細胞激素zh_TW
dc.subject瘦素zh_TW
dc.subject脂肪分化zh_TW
dc.subject免疫調節zh_TW
dc.subjectadipocytesen
dc.subjectadiponectinen
dc.subjectimmune regulationen
dc.subjectadipogenesisen
dc.subjectleptinen
dc.subjectmesenchymal stem cellsen
dc.subject3T3-L1 cellsen
dc.subjectadipokinesen
dc.title瘦素對間葉幹細胞與 3T3-L1 脂肪前驅細胞
分化之影響
zh_TW
dc.titleThe effects of leptin on the differentiation of mesenchymal stem cells and 3T3-L1 cellsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊雅惠(Ya-Hui Chuang),周秀慧(Shiu-Huey Chou)
dc.subject.keyword間葉幹細胞,3T3-L1 脂肪前驅細胞,脂肪細胞,脂肪細胞激素,瘦素,脂肪分化,免疫調節,脂聯素,zh_TW
dc.subject.keywordmesenchymal stem cells,3T3-L1 cells,adipocytes,adipokines,leptin,adipogenesis,immune regulation,adiponectin,en
dc.relation.page47
dc.identifier.doi10.6342/NTU201602830
dc.rights.note有償授權
dc.date.accepted2016-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved