請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49648
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 戴桓青(Hwan-Ching Tai) | |
dc.contributor.author | Hao-Tai Lin | en |
dc.contributor.author | 林豪泰 | zh_TW |
dc.date.accessioned | 2021-06-15T11:39:44Z | - |
dc.date.available | 2021-08-24 | |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-15 | |
dc.identifier.citation | Abramov, A.Y., Canevari, L. & Duchen, M.R. Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. Biochim. Biophys. Acta 1742, 81-87 (2004).
Al-Bassam, J., Ozer, R.S., Safer, D., Halpain, S. & Milligan, R.A. MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. J. Cell Biol. 157, 1187-1196 (2002). Alonso, A.D., Grundke-Iqbal, I., Barra, H.S. & Iqbal, K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: Sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc. Natl. Acad. Sci. 94, 298-303 (1997). Amanchy, R., Periaswamy, B., Mathivanan, S., Reddy, R., Tattikota, S.G. & Pandey, A. A curated compendium of phosphorylation motifs. Nat. Biotech. 25, 285-286 (2007). Amano, M., Hamaguchi, T., Shohag, M.H., Kozawa, K., Kato, K., Zhang, X., Yura, Y., Matsuura, Y., Kataoka, C., Nishioka, T. & Kaibuchi, K. Kinase-interacting substrate screening is a novel method to identify kinase substrates. J. Cell Biol. 209, 895-912 (2015). Andrews-Zwilling, Y., Bien-Ly, N., Xu, Q., Li, G., Bernardo, A., Yoon, S.Y., Zwilling, D., Yan, T.X., Chen, L. & Huang, Y. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J. Neurosci. 30, 13707-13717 (2010). Arendt, T., Stieler, J., Strijkstra, A.M., Hut, R.A., Rudiger, J., Van der Zee, E.A., Harkany, T., Holzer, M. & Hartig, W. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J. Neurosci. 23, 6972-6981 (2003). Arriagada, P.V., Growdon, J.H., Hedley-Whyte, E.T. & Hyman, B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology. 42, 631-639 (1992). Ballatore, C., Lee, V.M. & Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat. Rev. Neurosci. 8, 663-672 (2007). Barclay, J.W., Aldea, M., Craig, T.J., Morgan, A. & Burgoyne, R.D. Regulation of the fusion pore conductance during exocytosis by cyclin-dependent kinase 5. J. Biol. Chem. 279, 41495-41503 (2004). Berger, Z., Roder, H., Hanna, A., Carlson, A., Rangachari, V., Yue, M., Wszolek, Z., Ashe, K., Knight, J., Dickson, D., Andorfer, C., Rosenberry, T.L., Lewis, J., Hutton, M. & Janus, C. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J. Neurosci. 27, 3650-3662 (2007). Bhat, R.V., Leonov, S., Luthman, J., Scott, C.W. & Lee, C.M. Interactions between GSK3β and caspase signalling pathways during NGF deprivation induced cell death. J. Alzheimers Dis. 4, 291-301 (2002). Bhat, R.V., Shanley, J., Correll, M.P., Fieles, W.E., Keith, R.A., Scott, C.W. & Lee, C.M. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3β in cellular and animal models of neuronal degeneration. Proc. Natl. Acad. Sci. 97, 11074-11079 (2000). Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.H., Pages, F., Trajanoski, Z. & Galon, J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093 (2009). Borquez, D.A., Olmos, C., Alvarez, S., Di Genova, A., Maass, A. & Gonzalez-Billault, C. Bioinformatic survey for new physiological substrates of Cyclin-dependent kinase 5. Genomics 101, 221-228 (2013). Braak, E., Griffing, K., Arai, K., Bohl, J., Bratzke, H. & Braak, H. Neuropathology of Alzheimer's disease: what is new since A. Alzheimer? Eur. Arch. Psychiatry Clin. Neurosci. 249 Suppl 3, 14-22 (1999). Brandt, R., Hundelt, M. & Shahani, N. Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochim. Biophys. Acta 1739, 331-354 (2005). Brodal, P. The central nervous system : structure and function. 4th edn, (Oxford University Press, 2010). Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A. & Hof, P.R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Rev. 33, 95-130 (2000). Camins, A., Verdaguer, E., Folch, J., Canudas, A.M. & Pallas, M. The role of CDK5/P25 formation/inhibition in neurodegeneration. Drug News Perspect. 19, 453-460 (2006). Cohen, P. & Goedert, M. GSK3 inhibitors: development and therapeutic potential. Nat. Rev. Drug Discov. 3, 479-487 (2004). Cohen, T.J., Guo, J.L., Hurtado, D.E., Kwong, L.K., Mills, I.P., Trojanowski, J.Q. & Lee, V.M. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun. 2, 252 (2011). Contreras-Vallejos, E., Utreras, E., Borquez, D.A., Prochazkova, M., Terse, A., Jaffe, H., Toledo, A., Arruti, C., Pant, H.C., Kulkarni, A.B. & Gonzalez-Billault, C. Searching for novel Cdk5 substrates in brain by comparative phosphoproteomics of wild type and Cdk5-/- mice. PLoS One 9, e90363 (2014). Cripps, D., Thomas, S.N., Jeng, Y., Yang, F., Davies, P. & Yang, A.J. Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J. Biol. Chem. 281, 10825-10838 (2006). Cruz, J.C., Tseng, H.C., Goldman, J.A., Shih, H. & Tsai, L.H. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40, 471-483 (2003). De Felice, F.G., Wu, D., Lambert, M.P., Fernandez, S.J., Velasco, P.T., Lacor, P.N., Bigio, E.H., Jerecic, J., Acton, P.J., Shughrue, P.J., Chen-Dodson, E., Kinney, G.G. & Klein, W.L. Alzheimer's disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiol. Aging 29, 1334-1347 (2008). De Jesus-Cortes, H.J., Nogueras-Ortiz, C.J., Gearing, M., Arnold, S.E. & Vega, I.E. Amphiphysin-1 protein level changes associated with tau-mediated neurodegeneration. Neuroreport 23, 942-946 (2012). Dolan, P.J. & Johnson, G.V. The role of tau kinases in Alzheimer’s disease. Curr. Opin. Drug Discov. Devel. 13, 595-603 (2010). Evans, C.G., Wisen, S. & Gestwicki, J.E. Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1-42) aggregation in vitro. J. Biol. Chem. 281, 33182-33191 (2006). Fanara, P., Husted, K.H., Selle, K., Wong, P.Y., Banerjee, J., Brandt, R. & Hellerstein, M.K. Changes in microtubule turnover accompany synaptic plasticity and memory formation in response to contextual fear conditioning in mice. Neuroscience 168, 167-178 (2010). Ferrer, I., Barrachina, M. & Puig, B. Anti-tau phospho-specific Ser262 antibody recognizes a variety of abnormal hyper-phosphorylated tau deposits in tauopathies including Pick bodies and argyrophilic grains. Acta Neuropathol. 104, 658-664 (2002). Fischer, D., Mukrasch, M.D., Biernat, J., Bibow, S., Blackledge, M., Griesinger, C., Mandelkow, E. & Zweckstetter, M. Conformational changes specific for pseudophosphorylation at serine 262 selectively impair binding of tau to microtubules. Biochemistry 48, 10047-10055 (2009). Floyd, S.R., Porro, E.B., Slepnev, V.I., Ochoa, G., Tsai, L.H. & De Camilli, P. Amphiphysin 1 binds the cyclin-dependent kinase (cdk) 5 regulatory subunit p35 and is phosphorylated by cdk5 and cdc2. J. Biol. Chem. 276, 8104-8110 (2001). Gouras, G.K., Tsai, J., Naslund, J., Vincent, B., Edgar, M., Checler, F., Greenfield, J.P., Haroutunian, V., Buxbaum, J.D., Xu, H., Greengard, P. & Relkin, N.R. Intraneuronal Aβ42 Accumulation in Human Brain. Am. J. Pathol. 156, 15-20 (2000). Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y.C., Zaidi, M.S. & Wisniewski, H.M. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J. Biol. Chem. 261, 6084-6089 (1986). Gu, Y., Oyama, F. & Ihara, Y. Tau is widely expressed in rat tissues. J. Neurochem. 67, 1235-1244 (1996). Guidato, S., McLoughlin, D.M., Grierson, A.J. & Miller, C.C. Cyclin D2 interacts with cdk-5 and modulates cellular cdk-5/p35 activity. J. Neurochem. 70, 335-340 (1998). Hallows, J.L., Chen, K., DePinho, R.A. & Vincent, I. Decreased cyclin-dependent kinase 5 (cdk5) activity is accompanied by redistribution of cdk5 and cytoskeletal proteins and increased cytoskeletal protein phosphorylation in p35 null mice. J. Neurosci. 23, 10633-10644 (2003). Hanger, D.P., Betts, J.C., Loviny, T.L., Blackstock, W.P. & Anderton, B.H. New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer's disease brain using nanoelectrospray mass spectrometry. J. Neurochem. 71, 2465-2476 (1998). Hanger, D.P. & Noble, W. Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation. Int. J. Alzheimers Dis. 2011, 352805 (2011). Hanger, D.P., Byers, H.L., Wray, S., Leung, K.Y., Saxton, M.J., Seereeram, A., Reynolds, C.H., Ward, M.A. & Anderton, B.H. Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J. Biol. Chem. 282, 23645-23654 (2007). Hasegawa, M., Morishima-Kawashima, M., Takio, K., Suzuki, M., Titani, K. & Ihara, Y. Protein sequence and mass spectrometric analyses of tau in the Alzheimer's disease brain. J. Biol. Chem. 267, 17047-17054 (1992). Hetman, M., Cavanaugh, J.E., Kimelman, D. & Xia, Z. Role of Glycogen Synthase Kinase-3β in Neuronal Apoptosis Induced by Trophic Withdrawal. J. Neurosci. 20, 2567-2574 (2000). Hooper, C., Meimaridou, E., Tavassoli, M., Melino, G., Lovestone, S. & Killick, R. p53 is upregulated in Alzheimer's disease and induces tau phosphorylation in HEK293a cells. Neurosci. Lett. 418, 34-37 (2007). Hooper, C., Killick, R. & Lovestone, S. The GSK3 hypothesis of Alzheimer's disease. J. Neurochem. 104, 1433-1439 (2008). Hornbeck, P.V., Kornhauser, J.M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., Latham, V. & Sullivan, M. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 40, 261-270 (2012). Hoshi, M., Takashima, A., Noguchi, K., Murayama, M., Sato, M., Kondo, S., Saitoh, Y., Ishiguro, K., Hoshino, T. & Imahori, K. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proc. Natl. Acad. Sci. 93, 2719-2723 (1996). Hu, J., Rho, H.S., Newman, R.H., Zhang, J., Zhu, H. & Qian, J. PhosphoNetworks: a database for human phosphorylation networks. Bioinformatics 30, 141-142 (2013a). Hu, J., Rho, H.S., Newman, R.H., Hwang, W., Neiswinger, J., Zhu, H., Zhang, J. & Qian, J. Global analysis of phosphorylation networks in humans. Biochim. Biophys. Acta 1844, 224-231 (2013b). Huang, K.Y., Wu, H.Y., Chen, Y.J., Lu, C.T., Su, M.G., Hsieh, Y.C., Tsai, C.M., Lin, K.I., Huang, H.D., Lee, T.Y. & Chen, Y.J. RegPhos 2.0: an updated resource to explore protein kinase–substrate phosphorylation networks in mammals. Database: The Journal of Biological Databases and Curation 2014 (2014). Huang, Y. Abeta-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer's disease. Trends Mol. Med. 16, 287-294 (2010). Huang, Y. & Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell 148, 1204-1222 (2012). Huang, Y. Molecular and cellular mechanisms of apolipoprotein E4 neurotoxicity and potential therapeutic strategies. Curr. Opin. Drug Discov. Devel. 9, 627-641 (2006). Humbert, S., Dhavan, R. & Tsai, L. p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton. J. Cell Sci. 113, 975-983 (2000). Hunter, T. & Sefton, B.M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. 77, 1311-1315 (1980). Hunter, T. Signaling--2000 and beyond. Cell 100, 113-127 (2000). Iqbal, K., Liu, F., Gong, C.X., Alonso Adel, C. & Grundke-Iqbal, I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol. 118, 53-69 (2009). Iqbal, K., Liu, F., Gong, C.X. & Grundke-Iqbal, I. Tau in Alzheimer Disease and Related Tauopathies. Curr. Alzheimer Res. 7, 656-664 (2010). Ito, A., Kawaguchi, Y., Lai, C.H., Kovacs, J.J., Higashimoto, Y., Appella, E. & Yao, T.P. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 21, 6236-6245 (2002). Ittner, L.M., Ke, Y.D., Delerue, F., Bi, M., Gladbach, A., van Eersel, J., Wolfing, H., Chieng, B.C., Christie, M.J., Napier, I.A., Eckert, A., Staufenbiel, M., Hardeman, E. & Gotz, J. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 142, 387-397 (2010). Jankowsky, J.L., Fadale, D.J., Anderson, J., Xu, G.M., Gonzales, V., Jenkins, N.A., Copeland, N.G., Lee, M.K., Younkin, L.H., Wagner, S.L., Younkin, S.G. & Borchelt, D.R. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13, 159-170 (2004). Jessell, T.M. & Kandel, E.R. Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication. Cell 72 Suppl, 1-30 (1993). Jho, Y.S., Zhulina, E.B., Kim, M.W. & Pincus, P.A. Monte Carlo Simulations of Tau Proteins: Effect of Phosphorylation. Biophys. J. 99, 2387-2397 (2010). Jun, G., Moncaster, J.A., Koutras, C., Seshadri, S., Buros, J., McKee, A.C., Levesque, G., Wolf, P.A., St George-Hyslop, P., Goldstein, L.E. & Farrer, L.A. delta-Catenin is genetically and biologically associated with cortical cataract and future Alzheimer-related structural and functional brain changes. PLoS One 7, e43728 (2012). Kim, D., Frank, C.L., Dobbin, M.M., Tsunemoto, R.K., Tu, W., Peng, P.L., Guan, J.S., Lee, B.H., Moy, L.Y., Giusti, P., Broodie, N., Mazitschek, R., Delalle, I., Haggarty, S.J., Neve, R.L., Lu, Y. & Tsai, L.H. Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60, 803-817 (2008). Kim, J., Basak, J.M. & Holtzman, D.M. The role of apolipoprotein E in Alzheimer's disease. Neuron 63, 287-303 (2009). Kimura, T., Yamamoto, H., Takamatsu, J., Yuzuriha, T., Miyamoto, E. & Miyakawa, T. Phosphorylation of MARCKS in Alzheimer disease brains. Neuroreport 11, 869-873 (2000). King, M.E., Kan, H.M., Baas, P.W., Erisir, A., Glabe, C.G. & Bloom, G.S. Tau-dependent microtubule disassembly initiated by prefibrillar beta-amyloid. J. Cell. Biol. 175, 541-546 (2006). Klein, C., Kramer, E.M., Cardine, A.M., Schraven, B., Brandt, R. & Trotter, J. Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau. J. Neurosci. 22, 698-707 (2002). Kokubu, M., Ishihama, Y., Sato, T., Nagasu, T. & Oda, Y. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal. Chem. 77, 5144-5154 (2005). Koob, A. The root of thought : unlocking glia--the brain cell that will help us sharpen our wits, heal injury, and treat brain disease. (FT Press, 2009). Kuo, P.C. Analysis of tau hyperphosphorylation in a mouse model of Alzheimer disease by mass spectrometry. (Master's thesis). Institute of Chemistry, National Taiwan University, Taiwan. (2014). Labbadia, J. & Morimoto, R.I. Huntington's disease: underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci. 38, 378-385 (2013). Lee, G., Thangavel, R., Sharma, V.M., Litersky, J.M., Bhaskar, K., Fang, S.M., Do, L.H., Andreadis, A., Van Hoesen, G. & Ksiezak-Reding, H. Phosphorylation of tau by fyn: implications for Alzheimer's disease. J. Neurosci. 24, 2304-2312 (2004). Lee, M.S., Kwon, Y.T., Li, M., Peng, J., Friedlander, R.M. & Tsai, L.H. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360-364 (2000). Lee, V.M., Goedert, M. & Trojanowski, J.Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121-1159 (2001). Li, T., Hawkes, C., Qureshi, H.Y., Kar, S. & Paudel, H.K. Cyclin-dependent protein kinase 5 primes microtubule-associated protein tau site-specifically for glycogen synthase kinase 3beta. Biochemistry 45, 3134-3145 (2006). Lim, R.W. & Halpain, S. Regulated association of microtubule-associated protein 2 (MAP2) with Src and Grb2: evidence for MAP2 as a scaffolding protein. J. Biol. Chem. 275, 20578-20587 (2000). Lucas, J.J., Hernandez, F. & Gomez-Ramos, P. Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J. 20, 27-39 (2001). Mahley, R.W., Weisgraber, K.H. & Huang, Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc. Natl. Acad. Sci. 103, 5644-5651 (2006). Mandelkow, E.M., Biernat, J., Drewes, G., Steiner, B., Lichtenberg-Kraag, B., Wille, H., Gustke, N. & Mandelkow, E. Microtubule-associated Protein Tau, Paired Helical Filaments, and Phosphorylationa. Ann. N. Y. Acad. Sci. 695, 209-216 (1993). Martin, L., Latypova, X., Wilson, C.M., Magnaudeix, A., Perrin, M.L., Yardin, C. & Terro, F. Tau protein kinases: involvement in Alzheimer's disease. Ageing Res. Rev. 12, 289-309 (2013). Meyer-Luehmann, M., Mielke, M., Spires-Jones, T.L., Stoothoff, W., Jones, P., Bacskai, B.J. & Hyman, B.T. A reporter of local dendritic translocation shows plaque related loss of neural system function in APP transgenic mice. J Neurosci. 29, 12636-12640 (2009). Mietelska-Porowska, A., Wasik, U., Goras, M., Filipek, A. & Niewiadomska, G. Tau protein modifications and interactions: their role in function and dysfunction. Int. J. Mol. Sci. 15, 4671-4713 (2014). Miyajima, M., Nornes, H.O. & Neuman, T. Cyclin E is expressed in neurons and forms complexes with cdk5. Neuroreport 6, 1130-1132 (1995). Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Yoshida, H., Watanabe, A., Titani, K. & Ihara, Y. Hyperphosphorylation of tau in PHF. Neurobiol. Aging 16, 365-380 (1995a). Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Yoshida, H., Titani, K. & Ihara, Y. Proline-directed and non-proline-directed phosphorylation of PHF-tau. J. Biol. Chem. 270, 823-829 (1995b). Morris, M., Knudsen, G.M., Maeda, S., Trinidad, J.C., Ioanoviciu, A., Burlingame, A.L. & Mucke, L. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat. Neurosci. 18, 1183-1189 (2015). Morris, M., Maeda, S., Vossel, K. & Mucke, L. The many faces of tau. Neuron 70, 410-426 (2011). Mosevitsky, M. Nerve ending 'signal' proteins GAP-43, MARCKS, and BASP1. Int. Rev. Cytol. 245, 245-325 (2005). Newman, R.H., Hu, J., Rho, H.S., Xie, Z., Woodard, C., Neiswinger, J., Cooper, C., Shirley, M., Clark, H.M., Hu, S., Hwang, W., Jeong, J.S., Wu, G., Lin, J., Gao, X., Ni, Q., Goel, R., Xia, S., Ji, H., Dalby, K.N., Birnbaum, M.J., Cole, P.A., Knapp, S., Ryazanov, A.G., Zack, D.J., Blackshaw, S., Pawson, T., Gingras, A.C., Desiderio, S., Pandey, A., Turk, B.E., Zhang, J., Zhu, H. & Qian, J. Construction of human activity-based phosphorylation networks. Mol. Syst. Biol. 9, 655 (2013). Nikolic, M., Dudek, H., Kwon, Y.T., Ramos, Y.F. & Tsai, L.H. The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 10, 816-825 (1996). Noble, W., Olm, V., Takata, K., Casey, E., Mary, O., Meyerson, J., Gaynor, K., LaFrancois, J., Wang, L., Kondo, T., Davies, P., Burns, M., Veeranna, Nixon, R., Dickson, D., Matsuoka, Y., Ahlijanian, M., Lau, L.F. & Duff, K. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38, 555-565 (2003). Old, W.M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K.G., Mendoza, A., Sevinsky, J.R., Resing, K.A. & Ahn, N.G. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell Proteomics 4, 1487-1502 (2005). Paglini, G. & Caceres, A. The role of the Cdk5--p35 kinase in neuronal development. Eur. J. Biochem. 268, 1528-1533 (2001). Palmer, R.H., Schonwasser, D.C., Rahman, D., Pappin, D.J., Herget, T. & Parker, P.J. PRK1 phosphorylates MARCKS at the PKC sites: serine 152, serine 156 and serine 163. FEBS Lett. 378, 281-285 (1996). Palop, J.J., Chin, J. & Mucke, L. A network dysfunction perspective on neurodegenerative diseases. Nature 443, 768-773 (2006). Patrick, G.N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P. & Tsai, L.H. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615-622 (1999). Pei, J.J., Braak, H., An, W.L., Winblad, B., Cowburn, R.F., Iqbal, K. & Grundke-Iqbal, I. Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer's disease. Mol. Brain Res. 109, 45-55 (2002). Perez, M., Santa-Maria, I., Gomez de Barreda, E., Zhu, X., Cuadros, R., Cabrero, J.R., Sanchez-Madrid, F., Dawson, H.N., Vitek, M.P., Perry, G., Smith, M.A. & Avila, J. Tau--an inhibitor of deacetylase HDAC6 function. J. Neurochem. 109, 1756-1766 (2009). Piedrahita, D., Hernandez, I., Lopez-Tobon, A., Fedorov, D., Obara, B., Manjunath, B., Boudreau, R.L., Davidson, B., LaFerla, F., Gallego-Gomez, J.C., Kosik, K.S. & Cardona-Gomez, G.P. Silencing of CDK5 Reduces Neurofibrillary Tangles in Transgenic Alzheimer's Mice. J. Neurosci. 30, 13966-13976 (2010). Poore, C.P., Sundaram, J.R., Pareek, T.K., Fu, A., Amin, N., Mohamed, N.E., Zheng, Y.L., Goh, A.X., Lai, M.K., Ip, N.Y., Pant, H.C. & Kesavapany, S. Cdk5-mediated phosphorylation of delta-catenin regulates its localization and GluR2-mediated synaptic activity. J. Neurosci. 30, 8457-8467 (2010). Reynolds, C.H., Betts, J.C., Blackstock, W.P., Nebreda, A.R. & Anderton, B.H. Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3beta. J. Neurochem. 74, 1587-1595 (2000). Roberson, E.D., Scearce-Levie, K., Palop, J.J., Yan, F., Cheng, I.H., Wu, T., Gerstein, H., Yu, G.Q. & Mucke, L. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science 316, 750-754 (2007). Roberson, E.D., Halabisky, B., Yoo, J.W., Yao, J., Chin, J., Yan, F., Wu, T., Hamto, P., Devidze, N., Yu, G.Q., Palop, J.J., Noebels, J.L. & Mucke, L. Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J. Neurosci. 31, 700-711 (2011). Rush, J., Moritz, A., Lee, K.A., Guo, A., Goss, V.L., Spek, E.J., Zhang, H., Zha, X.M., Polakiewicz, R.D. & Comb, M.J. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23, 94-101 (2005). Sahara, N., Maeda, S. & Takashima, A. Tau oligomerization: a role for tau aggregation intermediates linked to neurodegeneration. Curr. Alzheimer Res. 5, 591-598 (2008). Samuels, B.A., Hsueh, Y.P., Shu, T., Liang, H., Tseng, H.C., Hong, C.J., Su, S.C., Volker, J., Neve, R.L., Yue, D.T. & Tsai, L.H. Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 56, 823-837 (2007). Santacruz, K., Lewis, J., Spires, T., Paulson, J., Kotilinek, L., Ingelsson, M., Guimaraes, A., DeTure, M., Ramsden, M., McGowan, E., Forster, C., Yue, M., Orne, J., Janus, C., Mariash, A., Kuskowski, M., Hyman, B., Hutton, M. & Ashe, K.H. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476-481 (2005). Savitski, M.M., Lemeer, S., Boesche, M., Lang, M., Mathieson, T., Bantscheff, M. & Kuster, B. Confident Phosphorylation Site Localization Using the Mascot Delta Score. Mol. Cell Proteomics 10, M110.003830 (2011). Scott, C.W., Spreen, R.C., Herman, J.L., Chow, F.P., Davison, M.D., Young, J. & Caputo, C.B. Phosphorylation of recombinant tau by cAMP-dependent protein kinase. Identification of phosphorylation sites and effect on microtubule assembly. J. Biol. Chem. 268, 1166-1173 (1993). Sengupta, A., Wu, Q., Grundke-Iqbal, I., Iqbal, K. & Singh, T.J. Potentiation of GSK-3-catalyzed Alzheimer-like phosphorylation of human tau by cdk5. Mol. Cell. Biochem. 167, 99-105 (1997). Serrano-Pozo, A., Frosch, M.P., Masliah, E. & Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect. Med. 1, a006189 (2011). Seward, M.E., Swanson, E., Norambuena, A., Reimann, A., Cochran, J.N., Li, R., Roberson, E.D. & Bloom, G.S. Amyloid-beta signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer's disease. J. Cell Sci. 126, 1278-1286 (2013). Shaw, P.C., Davies, A.F., Lau, K.F., Garcia-Barcelo, M., Waye, M.M., Lovestone, S., Miller, C.C. & Anderton, B.H. Isolation and chromosomal mapping of human glycogen synthase kinase-3 alpha and -3 beta encoding genes. Genome 41, 720-727 (1998). Shirasaki, D.I., Greiner, E.R., Al-Ramahi, I., Gray, M., Boontheung, P., Geschwind, D.H., Botas, J., Coppola, G., Horvath, S., Loo, J.A. & Yang, X.W. Network Organization of the Huntingtin Proteomic Interactome in Mammalian Brain. Neuron 75, 41-57 (2012). Short, R.A., Bowen, R.L., O'Brien, P.C. & Graff-Radford, N.R. Elevated gonadotropin levels in patients with Alzheimer disease. Mayo Clin. Proc. 76, 906-909 (2001). Smith, D. Cdk5 in Neuroskeletal Dynamics. Neurosignals 12, 239-251 (2003). Steen, H., Kuster, B., Fernandez, M., Pandey, A. & Mann, M. Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem. 277, 1031-1039 (2002). Su, S.C. & Tsai, L.H. Cyclin-dependent kinases in brain development and disease. Annu. Rev. Cell Dev. Biol. 27, 465-491 (2011). Tai, H.C., Serrano-Pozo, A., Hashimoto, T., Frosch, M.P., Spires-Jones, T.L. & Hyman, B.T. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am. J. Pathol. 181, 1426-1435 (2012). Tai, H.C., Wang, B.Y., Serrano-Pozo, A., Frosch, M.P., Spires-Jones, T.L. & Hyman, B.T. Frequent and symmetric deposition of misfolded tau oligomers within presynaptic and postsynaptic terminals in Alzheimer’s disease. Acta Neuropathol. Commun. 2, 146 (2014). Takashima, A., Noguchi, K., Michel, G., Mercken, M., Hoshi, M., Ishiguro, K. & Imahori, K. Exposure of rat hippocampal neurons to amyloid β peptide (25–35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3β. Neurosci. Lett. 203, 33-36 (1996). Tashiro, K., Hasegawa, M., Ihara, Y. & Iwatsubo, T. Somatodendritic localization of phosphorylated tau in neonatal and adult rat cerebral cortex. Neuroreport 8, 2797-2801 (1997). Thies, W. & Bleiler, L.A.s., A. 2013 Alzheimer's disease facts and figures. Alzheimers Dement. 9, 208-245 (2013). Thingholm, T.E., Jorgensen, T.J., Jensen, O.N. & Larsen, M.R. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc. 1, 1929-1935 (2006). Thingholm, T.E., Jensen, O.N. & Larsen, M.R. Analytical strategies for phosphoproteomics. Proteomics 9, 1451-1468 (2009). Trojanowski, J.Q., Schuck, T., Schmidt, M.L. & Lee, V.M. Distribution of tau proteins in the normal human central and peripheral nervous system. J. Histochem. Cytochem. 37, 209-215 (1989). Tsai, C.F., Wang, Y.T., Chen, Y.R., Lai, C.Y., Lin, P.Y., Pan, K.T., Chen, J.Y., Khoo, K.H. & Chen, Y.J. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J. Proteome Res. 7, 4058-4069 (2008). Tseng, H.C., Zhou, Y., Shen, Y. & Tsai, L.H. A survey of Cdk5 activator p35 and p25 levels in Alzheimer's disease brains. FEBS Lett. 523, 58-62 (2002). Uchida, Y. Overexpression of full-length but not N-terminal truncated isoform of microtubule-associated protein (MAP) 1B accelerates apoptosis of cultured cortical neurons. J. Biol. Chem. 278, 366-371 (2003). Ulloa, L., Montejo de Garcini, E., Gomez-Ramos, P., Moran, M.A. & Avila, J. AMYLOID-β PEPTIDE BINDS TO MICROTUBULE-ASSOCIATED PROTEIN 1B (MAP1B). Neurochem. Int. 52, 1030-1036 (2008). Villen, J., Beausoleil, S.A., Gerber, S.A. & Gygi, S.P. Large-scale phosphorylation analysis of mouse liver. Proc. Natl. Acad. Sci. 104, 1488-1493 (2007). Wang, Y.T., Tsai, C.F., Hong, T.C., Tsou, C.C., Lin, P.Y., Pan, S.H., Hong, T.M., Yang, P.C., Sung, T.Y., Hsu, W.L. & Chen, Y.J. An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J. Proteome Res. 9, 5582-5597 (2010). Weingarten, M.D., Lockwood, A.H., Hwo, S.Y. & Kirschner, M.W. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. 72, 1858-1862 (1975). Woodgett, J.R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9, 2431-2438 (1990). Wu, W.C., Walaas, S.I., Nairn, A.C. & Greengard, P. Calcium/phospholipid regulates phosphorylation of a Mr '87k' substrate protein in brain synaptosomes. Proc. Natl. Acad. Sci. 79, 5249-5253 (1982). Wu, Y., Matsui, H. & Tomizawa, K. Amphiphysin I and regulation of synaptic vesicle endocytosis. Acta Med. Okayama 63, 305-323 (2009). Yamamoto, H., Hiragami, Y., Murayama, M., Ishizuka, K., Kawahara, M. & Takashima, A. Phosphorylation of tau at serine 416 by Ca2+/calmodulin-dependent protein kinase II in neuronal soma in brain. J. Neurochem. 94, 1438-1447 (2005). Yu, Y., Run, X., Liang, Z., Li, Y., Liu, F., Liu, Y., Iqbal, K., Grundke-Iqbal, I. & Gong, C.X. Developmental regulation of tau phosphorylation, tau kinases, and tau phosphatases. J. Neurochem. 108, 1480-1494 (2009). Zhu, X., Rottkamp, C.A., Boux, H., Takeda, A., Perry, G. & Smith, M.A. Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J. Neuropathol. Exp. Neurol. 59, 880-888 (2000). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49648 | - |
dc.description.abstract | Aβ胜肽堆積形成的斑塊以及tau蛋白堆積形成的神經纖維糾結為阿茲海默症中最主要的病理特徵。然而Aβ胜肽病變和tau蛋白病變之間的關聯性是最為關鍵但尚未能解決的議題。在先前的研究中,我們在患有阿茲海默症的大腦的神經突觸中觀察到過磷酸化且錯誤折疊的tau蛋白沉積物。於此研究中,我們使用有大量斑塊而沒有神經纖維糾結的APP/PS1老鼠模型以及定量磷酸化蛋白質體學來探討tau的過磷酸化。我們在控制組和APP/PS1老鼠的突觸體中發現到12個tau蛋白的磷酸化位置。然而,其中有6個磷酸化位置 (S199, S202, S396, S400, S404, S416) 在APP/PS1的老鼠中可以發現到磷酸化增加的量在統計上有顯著的差異。tau蛋白過磷酸化圖譜表明,Aβ會活化在突觸體中的脯氨酸導引蛋白質激酶 (proline-directed kinase, PDK)。
我們透過全面性的磷酸化蛋白質體學分析,發現到包含tau蛋白在內,有40個突觸體蛋白被過磷酸化,而這些蛋白又尤其是被PDK及酸導引蛋白質激酶 (acid-directed kinase, ADK) 給磷酸化。藉由更進一步的序列分析,我們發現到cyclin-dependent kinase 5 (CDK5) 以及 casein kinase 2 (CK2) 分別為被活化的PDK及ADK。我們的數據表明,CDK5 在Aβ胜肽病變和tau蛋白病變之間扮演重要的連結,且阻斷CDK5 的活化將可能是在阿茲海默症中具有潛力的治療方式。 | zh_TW |
dc.description.abstract | The key pathological features of Alzheimer’s disease (AD) are aggregates of Aβ peptide (plaques) and tau protein (tangles). The relation between Aβ pathology and tau pathology is a critical but unresolved issue. We previously observed that neuronal synapses in AD-affected brains showed deposits of hyperphosphorylated and misfolded tau protein. Here we investigated the cause of tau hyperphosphorylation in synapses using APP/PS1 mice and quantitative phosphoproteomics. We found 12 tau phosphosites in mouse synaptosomes, which were identical for APP/PS1 and control mice. Importantly, 6 of these sites (S199, S202, S396, S400, S404, S416) showed statistically significant increase in APP/PS1 mice. The pattern of tau hyperphosphorylation suggested the activation of proline-directed kinases (PDK) by Aβ at synapses.
Through global phosphoproteomic analysis, we found 40 synaptic proteins including tau which were hyperphosphorylated, especially by proline-directed kinases and acid-directed kinases. Further motif analysis suggested cyclin-dependent kinase 5 (CDK5) as the highly activated proline-directed kinase, and casein kinase II (CK2) as the highly activated acid-directed kinase. Our data suggests that CDK5 is an important link between Aβ and tau pathology, and that blocking the activation of CDK5 may be a potential therapeutic strategy for AD. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:39:44Z (GMT). No. of bitstreams: 1 ntu-105-R03223207-1.pdf: 7037155 bytes, checksum: cab0a70402c30c252c210b94bb51a7a6 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii Table of Contents iv LIST OF FIGURES vi LIST OF TABLES viii Abbreviations ix Chapter 1 Introduction 1 1.1 Cell types in the brain 1 1.2 Alzheimer disease and synaptic dysfunction 3 1.3 Phosphorylation pattern of tau protein 4 1.4 Tau protein kinases 10 1.5 Mass spectrometry for phosphoproteomics 13 1.6 Label-free quantification in mass spectrometry 17 1.7 Aim of this study 20 Chapter 2 Results and Discussion 21 2.1 Phosphorylation sites, label-free quantification of phosphopeptides, and kinases of tau 21 2.2 Label-free quantification of non-tau phosphopeptides 33 2.3 Identification of kinases involved in tau hyperphosphorylation 38 2.4 Reported CDK5 substrates 43 2.5 Functional analysis and interaction of hyperphosphorylated proteins in synaptosomes of APP/PS1 mouse 46 Chapter 3 Conclusion 50 Chapter 4 Materials and Methods 52 4.1 Materials 52 4.1.1 Mice for synaptosome preparation 52 4.1.2 Chemicals 52 4.2 Synaptosome preparation 53 4.3 LC-MS/MS analysis 54 4.3.1 LC-MS/MS analysis 54 4.3.2 Database Search 54 4.3.3 Quantitative analysis by IDEAL-Q 55 4.4 Bioinformatic analysis 56 4.4.1 Functional analysis by ClueGO 56 4.4.2 Phosphorylation site motif 56 4.4.3 Protein-Protein interaction network 56 4.5 Western blot 57 4.5.1 SDS-PAGE using home-made gradient gel 57 4.5.2 Western transfer and blotting 57 REFERENCE 59 APPENDIX 77 | |
dc.language.iso | en | |
dc.title | 以定量磷酸化蛋白質體學分析阿茲海默症小鼠模型中神經突觸體的病理變化 | zh_TW |
dc.title | Quantitative phospho-proteomic analysis of pathological changes at neuronal synapses in a mouse model of Alzheimer disease | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王宗興(Tsung-Shing Wang),韓嘉莉(Chia-Li Han) | |
dc.subject.keyword | 阿茲海默症,斑塊,神經纖維糾結,過磷酸化, | zh_TW |
dc.subject.keyword | Aβ,tau,APP/PS1,plaque,tangle, | en |
dc.relation.page | 82 | |
dc.identifier.doi | 10.6342/NTU201602446 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 6.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。