Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49618
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林泰元(Thai-Yen Ling)
dc.contributor.authorBo-Yi Yuen
dc.contributor.author余柏毅zh_TW
dc.date.accessioned2021-06-15T11:37:59Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citation1. Ahmed, M. N., Suliman, H. B., Folz, R. J., Nozik-Grayck, E., Golson, M. L., Mason, S. N., & Auten, R. L. (2003). Extracellular superoxide dismutase protects lung development in hyperoxia-exposed newborn mice. Am J Respir Crit Care Med, 167(3), 400-405. doi:10.1164/rccm.200202-108OC
2. Alejandre-Alcazar, M. A., Kwapiszewska, G., Reiss, I., Amarie, O. V., Marsh, L. M., Sevilla-Perez, J., . . . Morty, R. E. (2007). Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol, 292(2), L537-549. doi:10.1152/ajplung.00050.2006
3. Angara, S., Syed, M., Das, P., Janer, C., Pryhuber, G., Rahman, A., . . . Bhandari, V. (2016). Inhibition of RPTOR Prevents Hyperoxia-induced Lung Injury by Enhancing Autophagy and Reducing Apoptosis in Neonatal Mice. Am J Respir Cell Mol Biol. doi:10.1165/rcmb.2015-0349OC
4. Arner, E. S., & Holmgren, A. (2000). Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem, 267(20), 6102-6109.
5. Arthur, J. R. (2000). The glutathione peroxidases. Cell Mol Life Sci, 57(13-14), 1825-1835.
6. Baraldi, E., & Filippone, M. (2007). Chronic lung disease after premature birth. N Engl J Med, 357(19), 1946-1955. doi:10.1056/NEJMra067279
7. Barrett, C. W., Ning, W., Chen, X., Smith, J. J., Washington, M. K., Hill, K. E., . . . Williams, C. S. (2013). Tumor suppressor function of the plasma glutathione peroxidase gpx3 in colitis-associated carcinoma. Cancer Res, 73(3), 1245-1255. doi:10.1158/0008-5472.CAN-12-3150
8. Berkelhamer, S. K., & Farrow, K. N. (2014). Developmental regulation of antioxidant enzymes and their impact on neonatal lung disease. Antioxid Redox Signal, 21(13), 1837-1848. doi:10.1089/ars.2013.5515
9. Bhatt, A. J., Pryhuber, G. S., Huyck, H., Watkins, R. H., Metlay, L. A., & Maniscalco, W. M. (2001). Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med, 164(10 Pt 1), 1971-1980. doi:10.1164/ajrccm.164.10.2101140
10. Bitterman, H. (2009). Bench-to-bedside review: oxygen as a drug. Crit Care, 13(1), 205. doi:10.1186/cc7151
11. Brigelius-Flohe, R., & Maiorino, M. (2013). Glutathione peroxidases. Biochim Biophys Acta, 1830(5), 3289-3303. doi:10.1016/j.bbagen.2012.11.020
12. Chabot, F., Mitchell, J. A., Gutteridge, J. M., & Evans, T. W. (1998). Reactive oxygen species in acute lung injury. Eur Respir J, 11(3), 745-757.
13. Chang, Y. S., Ahn, S. Y., Yoo, H. S., Sung, S. I., Choi, S. J., Oh, W. I., & Park, W. S. (2014). Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr, 164(5), 966-972 e966. doi:10.1016/j.jpeds.2013.12.011
14. Comhair, S. A., & Erzurum, S. C. (2002). Antioxidant responses to oxidant-mediated lung diseases. Am J Physiol Lung Cell Mol Physiol, 283(2), L246-255. doi:10.1152/ajplung.00491.2001
15. Crapo, J. D. (1986). Morphologic changes in pulmonary oxygen toxicity. Annu Rev Physiol, 48, 721-731. doi:10.1146/annurev.ph.48.030186.003445
16. De Paepe, M. E., Mao, Q., Chao, Y., Powell, J. L., Rubin, L. P., & Sharma, S. (2005). Hyperoxia-induced apoptosis and Fas/FasL expression in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol, 289(4), L647-659. doi:10.1152/ajplung.00445.2004
17. Dinu, D., Chu, C., Veith, A., Lingappan, K., Couroucli, X., Jefcoate, C. R., . . . Moorthy, B. (2016). Mechanistic role of cytochrome P450 (CYP)1B1 in oxygen-mediated toxicity in pulmonary cells: A novel target for prevention of hyperoxic lung injury. Biochem Biophys Res Commun, 476(4), 346-351. doi:10.1016/j.bbrc.2016.05.125
18. Dittrich, A. M., Meyer, H. A., Krokowski, M., Quarcoo, D., Ahrens, B., Kube, S. M., . . . Hamelmann, E. (2010). Glutathione peroxidase-2 protects from allergen-induced airway inflammation in mice. Eur Respir J, 35(5), 1148-1154. doi:10.1183/09031936.00026108
19. Dunn, L. L., Midwinter, R. G., Ni, J., Hamid, H. A., Parish, C. R., & Stocker, R. (2014). New insights into intracellular locations and functions of heme oxygenase-1. Antioxid Redox Signal, 20(11), 1723-1742. doi:10.1089/ars.2013.5675
20. Forman, H. J., Zhang, H., & Rinna, A. (2009). Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med, 30(1-2), 1-12. doi:10.1016/j.mam.2008.08.006
21. Herriges, M., & Morrisey, E. E. (2014). Lung development: orchestrating the generation and regeneration of a complex organ. Development, 141(3), 502-513. doi:10.1242/dev.098186
22. Ho, Y. S., Magnenat, J. L., Bronson, R. T., Cao, J., Gargano, M., Sugawara, M., & Funk, C. D. (1997). Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem, 272(26), 16644-16651.
23. Jobe, A. H. (2011). The new bronchopulmonary dysplasia. Curr Opin Pediatr, 23(2), 167-172. doi:10.1097/MOP.0b013e3283423e6b
24. Kim, M. J., Ryu, J. C., Kwon, Y., Lee, S., Bae, Y. S., Yoon, J. H., & Ryu, J. H. (2014). Dual oxidase 2 in lung epithelia is essential for hyperoxia-induced acute lung injury in mice. Antioxid Redox Signal, 21(13), 1803-1818. doi:10.1089/ars.2013.5677
25. Laube, M., Stolzing, A., Thome, U. H., & Fabian, C. (2016). Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth. Int J Biochem Cell Biol, 74, 18-32. doi:10.1016/j.biocel.2016.02.023
26. Li, Q., Wall, S. B., Ren, C., Velten, M., Hill, C. L., Locy, M. L., . . . Tipple, T. E. (2016). Thioredoxin Reductase Inhibition Attenuates Neonatal Hyperoxic Lung Injury and Enhances Nrf2 Activation. Am J Respir Cell Mol Biol. doi:10.1165/rcmb.2015-0228OC
27. Liao, J., Kapadia, V. S., Brown, L. S., Cheong, N., Longoria, C., Mija, D., . . . Savani, R. C. (2015). The NLRP3 inflammasome is critically involved in the development of bronchopulmonary dysplasia. Nat Commun, 6, 8977. doi:10.1038/ncomms9977
28. Luan, Y., Zhang, L., Chao, S., Liu, X., Li, K., Wang, Y., & Zhang, Z. (2016). Mesenchymal stem cells in combination with erythropoietin repair hyperoxia-induced alveoli dysplasia injury in neonatal mice via inhibition of TGF-beta1 signaling. Oncotarget. doi:10.18632/oncotarget.9314
29. Morse, D., & Choi, A. M. (2002). Heme oxygenase-1: the 'emerging molecule' has arrived. Am J Respir Cell Mol Biol, 27(1), 8-16. doi:10.1165/ajrcmb.27.1.4862
30. Nardiello, C., & Morty, R. E. (2016). MicroRNA in late lung development and bronchopulmonary dysplasia: the need to demonstrate causality. Mol Cell Pediatr, 3(1), 19. doi:10.1186/s40348-016-0047-5
31. Nordberg, J., & Arner, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 31(11), 1287-1312.
32. Northway, W. H., Jr., Rosan, R. C., & Porter, D. Y. (1967). Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med, 276(7), 357-368. doi:10.1056/NEJM196702162760701
33. Olson, G. E., Whitin, J. C., Hill, K. E., Winfrey, V. P., Motley, A. K., Austin, L. M., . . . Burk, R. F. (2010). Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells. Am J Physiol Renal Physiol, 298(5), F1244-1253. doi:10.1152/ajprenal.00662.2009
34. Pagano, A., & Barazzone-Argiroffo, C. (2003). Alveolar cell death in hyperoxia-induced lung injury. Ann N Y Acad Sci, 1010, 405-416.
35. Rogers, L. K., Perveen, S., Patel, H., Arif, A., Younis, S., Codipilly, C. N., & Ahmed, M. (2012). Role of EC-SOD Overexpression in Preserving Pulmonary Angiogenesis Inhibited by Oxidative Stress. PLoS ONE, 7(12), e51945. doi:10.1371/journal.pone.0051945
36. Romashko, J., Horowitz, S., Franek, W. R., Palaia, T., Miller, E. J., Lin, A., . . . Mantell, L. L. (2003). MAPK pathways mediate hyperoxia-induced oncotic cell death in lung epithelial cells. Free Radical Biology and Medicine, 35(8), 978-993. doi:10.1016/s0891-5849(03)00494-5
37. Steele-Perkins, G., Plachez, C., Butz, K. G., Yang, G., Bachurski, C. J., Kinsman, S. L., . . . Gronostajski, R. M. (2005). The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol Cell Biol, 25(2), 685-698. doi:10.1128/MCB.25.2.685-698.2005
38. Syed, M. A., & Bhandari, V. (2013). Hyperoxia exacerbates postnatal inflammation-induced lung injury in neonatal BRP-39 null mutant mice promoting the M1 macrophage phenotype. Mediators Inflamm, 2013, 457189. doi:10.1155/2013/457189
39. van Haaften, T., Byrne, R., Bonnet, S., Rochefort, G. Y., Akabutu, J., Bouchentouf, M., . . . Thebaud, B. (2009). Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med, 180(11), 1131-1142. doi:10.1164/rccm.200902-0179OC
40. Vicencio, A. G., Lee, C. G., Cho, S. J., Eickelberg, O., Chuu, Y., Haddad, G. G., & Elias, J. A. (2004). Conditional overexpression of bioactive transforming growth factor-beta1 in neonatal mouse lung: a new model for bronchopulmonary dysplasia? Am J Respir Cell Mol Biol, 31(6), 650-656. doi:10.1165/rcmb.2004-0092OC
41. Vozzelli, M. A., Mason, S. N., Whorton, M. H., & Auten, R. L., Jr. (2004). Antimacrophage chemokine treatment prevents neutrophil and macrophage influx in hyperoxia-exposed newborn rat lung. Am J Physiol Lung Cell Mol Physiol, 286(3), L488-493. doi:10.1152/ajplung.00414.2002
42. Ware, L. B., & Matthay, M. A. (2000). The acute respiratory distress syndrome. N Engl J Med, 342(18), 1334-1349. doi:10.1056/NEJM200005043421806
43. Xu, D., Perez, R. E., Ekekezie, II, Navarro, A., & Truog, W. E. (2008). Epidermal growth factor-like domain 7 protects endothelial cells from hyperoxia-induced cell death. Am J Physiol Lung Cell Mol Physiol, 294(1), L17-23. doi:10.1152/ajplung.00178.2007
44. Yang. (2009). An 8-gene signature, including methylated and down-regulated glutathione peroxidase 3, of gastric cancer. International Journal of Oncology, 36(2). doi:10.3892/ijo_00000513
45. Yang, Z. L., Yang, L., Zou, Q., Yuan, Y., Li, J., Liang, L., . . . Chen, S. (2013). Positive ALDH1A3 and negative GPX3 expressions are biomarkers for poor prognosis of gallbladder cancer. Dis Markers, 35(3), 163-172. doi:10.1155/2013/187043
46. Yant, L. J., Ran, Q., Rao, L., Van Remmen, H., Shibatani, T., Belter, J. G., . . . Prolla, T. A. (2003). The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med, 34(4), 496-502.
47. Yee, M., Vitiello, P. F., Roper, J. M., Staversky, R. J., Wright, T. W., McGrath-Morrow, S. A., . . . O'Reilly, M. A. (2006). Type II epithelial cells are critical target for hyperoxia-mediated impairment of postnatal lung development. Am J Physiol Lung Cell Mol Physiol, 291(5), L1101-1111. doi:10.1152/ajplung.00126.2006
48. Yu, B., Li, X., Wan, Q., Han, W., Deng, C., & Guo, C. (2016). High-Mobility Group Box-1 Protein Disrupts Alveolar Elastogenesis of Hyperoxia-Injured Newborn Lungs. J Interferon Cytokine Res, 36(3), 159-168. doi:10.1089/jir.2015.0080
49. Zelko, I. N., Mariani, T. J., & Folz, R. J. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med, 33(3), 337-349.
50. Zhang, X., Peng, W., Zhang, S., Wang, C., He, X., Zhang, Z., . . . Feng, Z. (2011). MicroRNA expression profile in hyperoxia-exposed newborn mice during the development of bronchopulmonary dysplasia. Respir Care, 56(7), 1009-1015. doi:10.4187/respcare.01032
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49618-
dc.description.abstract高純度氧氣療法已被納入現今許多疾病的治療準則之中,但不可否認地它伴隨的副作用如結構損傷或發炎反應仍然遍及各種組織器官,而其中肺臟的損傷尤甚。目前關於高氧造成肺部損傷之研究多數仍集中在第二型肺泡細胞及肺臟內皮細胞的損傷模式等等,但有關於高純度氧氣如何對第一型肺泡細胞及其幹細胞造成影響,而此影響又是如何參與在肺部損傷的病理機制之中,都還尚未被廣泛討論。為了釐清高氧誘導之肺部損傷的機制並找到合適的治療方法,我們將在之前的研究中建立好的類第一型肺泡細胞之分化模型暴露於高純度氧氣的環境中,並且發現隨著老鼠肺部幹細胞分化成類第一型肺泡細胞之過程中,細胞對於高純度氧氣的抗性也會隨之上升。接著我們透過生物資訊工具分析肺部幹細胞分化過程之全基因表現資料推測第三型穀胱甘肽過氧化物酶(GPx 3)可能於此抗性中扮演關鍵的角色,因此又進行了後續的即時聚合酶鏈鎖式反應、西方墨點法,及免疫螢光細胞染色法證實了其在老鼠肺部幹細胞分化中的表現量差異。而在以藥物抑制第三型穀胱甘肽過氧化物酶的酵素作用之實驗中也再度得證了其在已分化成熟的老鼠肺部幹細胞中抵禦高純度氧氣之重要性。綜合以上實驗的結果,我們合理地推測隨著老鼠肺部幹細胞分化而增加其表現量的第三型穀胱甘肽過氧化物酶對於其獲得的抵禦高純度氧氣損傷之抗性有高度的相關性。zh_TW
dc.description.abstractHyperoxia-based treatment has been approved for many disease indications from long times ago, but its adverse effect such as structural damages and inflammation of tissues, especially lungs, still cannot be ignored. Numerous researches focused on endothelial cells and type 2 pneumocytes of lungs, but the role of type 1 pneumocytes and its stem cells in pathological events of hyperoxia-induced lung injuries was little discussed. To deeply understand the pathology of hyperoxia-induced lung injuries and search for its potential therapies, we applied hyperoxia treatments to a type 1-like pneumocytes differentiation model of mouse lung stem/progenitor cells (mPSCs) established in our lab in previous studies and discovered a growing resistance accompanied with differentiation. Through bioinformatics tools to analyze the whole genome gene expression data of mPSCs, we supposed the potential role of glutathione peroxidase 3 (GPx3) in the mechanism of acquired hyperoxia-resistance of mPSCs. Also, the differential expression of GPx3 was validated by the results of real-time qPCR, western blot, and immunocytochemistry and inhibition of GPx enzyme activities in cell proliferation and intracellular ROS accumulation assays further confirmed its indispensability in anti-oxidant defensing system of mPSCs. Based on the evidence of our experiments, we supposed that the growing expression of GPx3
provided the resistance to hyperoxia environment for well-differentiated mPSCs.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:37:59Z (GMT). No. of bitstreams: 1
ntu-105-R03443007-1.pdf: 3129790 bytes, checksum: 94ffb86623a646596ab4cef4323f276d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 iv
Abstract v
Abbreviation list vi
Chapter 1 : Introduction 1
1.1 Hyperoxia-induced lung injury 2
1.2 Bronchopulmonary dysplasia and stem cells 3
1.3 ROS metabolism 4
1.4 Anti-oxidant defense system 5
1.5 Glutathione peroxidase (GPx) family 9
1.6 Aims of study 10
Chapter 2 : Materials and Methods 12
2.1 Primary culture of mPSCs (mouse pulmonary stem/progenitor cells) 13
2.2 mPSCs isolation and in vitro differentiation 14
2.3 WST-8 cell proliferation assay 14
2.4 TUNEL staining 15
2.5 Bioinformatics analysis 16
2.6 Real-time PCR and primers design 16
2.7 Immunocytochemistry 18
2.8 Immunohistochemistry 18
2.9 Western blotting and antibodies 19
2.10 Intracellular ROS assay 20
Chapter 3 : Results 21
3.1 mPSCs show a differential sensitivity to hyperoxia treatment during differentiation process. 22
3.2 gpx3 is a potential candidate gene involved in mPSCs anti-oxidant defense system 23
3.3 The significance of GPx3 in mPSCs anti-oxidant defense system was validated by its protein level and distribution during mPSCs differentiation. 24
3.4 GPx3 and T1 double positive cells can be observed in surface of alveolus. 26
3.5 Inhibition of GPx activity for 72 hours induces hyperoxia sensitivity of differentiated mPSCs. 27
3.6 NAC treatment doesn’t increase hyperoxia resistance of mPSCs in the early stage. 28
3.7 Cell death induced by inhibition of GPx activity is mediated by intracellular ROS accumulation in mPSCs 29
Chapter 4 : Discussion and Conclusion 30
4.1 The potential mechanism of hyperoxia-induced injuries on developing lungs: a comparison between other studies. 31
4.2 The dynamic lung stem/progenitor cells differentiation model 33
4.3 The period-related hypothesis of catalase and GPx in mPSCs differentiation model 34
4.4 The potential as a drug screening platform of mPSCs differentiation model 35
4.5 Conclusion 35
Chapter 5 : Figures and Legends 37
5.1 mPSCs show a differential sensitivity to hyperoxia treatment during differentiation 39
5.2 Hyperoxia induces cell apoptosis of mPSCs during the hyperoxia sensitive period 41
5.3 Anti-oxidant related gene expression profile of mPSCs at specific differentiation stages 43
5.4 Validation of the gene expression profile from NGS was conducted by real-time qPCR 45
5.5 GPx3 protein levels are upregulated in the differentiation process of lung stem/progenitor cells 47
5.6 GPx3 protein shows a time-related distribution pattern during the differentiation process of lung stem/progenitor cells. 49
5.7 GPx3 protein was co-localized with type I pneumocytes marker T1 on neonatal mouse alveolar slices. 51
5.8 Inhibition of GPx activity for 72 hours induces hyperoxia sensitivity of differentiated mPSCs. 53
5.9 NAC treatment doesn’t increase hyperoxia resistance of mPSCs in the early stage. 55
5.10 Inhibition of GPx activity for 24 hours induces intracellular ROS accumulation in mPSCs 57
References 59
dc.language.isoen
dc.title高氧誘導肺臟幹細胞損傷之機制探討zh_TW
dc.titleTo study the mechanism of hyperoxia-induced injury of pulmonary stem/progenitor cells.en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳惠文(Huei-Wen Chen),符文美(Wen-Mei Fu),楊鎧鍵(Kai-Chien Yang),曹伯年(Po-Nien Tsao)
dc.subject.keyword高氧,肺臟幹細胞,自由基,第三型穀胱甘?過氧化物?,zh_TW
dc.subject.keywordHyperoxia,lung stem cell,ROS,GPX3,en
dc.relation.page63
dc.identifier.doi10.6342/NTU201602746
dc.rights.note有償授權
dc.date.accepted2016-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved