Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49576
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹迺立(Nei-Li Chan)
dc.contributor.authorYu-Chih Chaoen
dc.contributor.author趙育鋕zh_TW
dc.date.accessioned2021-06-15T11:35:39Z-
dc.date.available2025-08-19
dc.date.copyright2020-09-02
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citation1. Waldron, K.J. and N.J. Robinson, How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol, 2009. 7(1): p. 25-35.
2. Andreini, C., et al., Metal ions in biological catalysis: from enzyme databases to general principles. JBIC Journal of Biological Inorganic Chemistry, 2008. 13(8): p. 1205-1218.
3. Argudin, M.A., A. Hoefer, and P. Butaye, Heavy metal resistance in bacteria from animals. Res Vet Sci, 2019. 122: p. 132-147.
4. Silver, S. and T. Phung le, A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol, 2005. 32(11-12): p. 587-605.
5. Lemire, J.A., J.J. Harrison, and R.J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol, 2013. 11(6): p. 371-84.
6. Morales, M.E., et al., Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes. PloS one, 2016. 11(3): p. e0151367-e0151367.
7. Palmer, L.D. and E.P. Skaar, Transition Metals and Virulence in Bacteria. Annu Rev Genet, 2016. 50: p. 67-91.
8. Nies, D.H., Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev, 2003. 27(2-3): p. 313-39.
9. Koechler, S., et al., Toxic metal resistance in biofilms: diversity of microbial responses and their evolution. Res Microbiol, 2015. 166(10): p. 764-73.
10. Baksh, K.A. and D.B. Zamble, Allosteric control of metal-responsive transcriptional regulators in bacteria. J Biol Chem, 2020. 295(6): p. 1673-1684.
11. Summers, A.O., Damage control: regulating defenses against toxic metals and metalloids. Current Opinion in Microbiology, 2009. 12(2): p. 138-144.
12. Barkay, T., S.M. Miller, and A.O. Summers, Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev, 2003. 27(2-3): p. 355-84.
13. Brown, N.L., et al., The MerR family of transcriptional regulators. FEMS Microbiol Rev, 2003. 27(2-3): p. 145-63.
14. Changela, A., et al., Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science, 2003. 301(5638): p. 1383-7.
15. Heldwein, E.E. and R.G. Brennan, Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature, 2001. 409(6818): p. 378-82.
16. Watanabe, S., et al., Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proc Natl Acad Sci U S A, 2008. 105(11): p. 4121-6.
17. Liu, X., et al., Selective cadmium regulation mediated by a cooperative binding mechanism in CadR. Proc Natl Acad Sci U S A, 2019. 116(41): p. 20398-20403.
18. Chen, K., C.E. Outten, and T.V. O'Halloran, DNA distortion mechanism for transcriptional activation by a copper-responsive gene-regulatory protein CueR in E-coli. Journal of Inorganic Biochemistry, 2001. 86(1): p. 179-179.
19. Frantz, B. and T.V. Ohalloran, DNA Distortion Accompanies Transcriptional Activation by the Metal-Responsive Gene-Regulatory Protein Merr. Biochemistry, 1990. 29(20): p. 4747-4751.
20. Outten, C.E., F.W. Outten, and T.V. O'Halloran, DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. Journal of Biological Chemistry, 1999. 274(53): p. 37517-37524.
21. Rice, K.M., et al., Environmental mercury and its toxic effects. J Prev Med Public Health, 2014. 47(2): p. 74-83.
22. Nascimento, A.M. and E. Chartone-Souza, Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet Mol Res, 2003. 2(1): p. 92-101.
23. Matsui, K. and G. Endo, Mercury bioremediation by mercury resistance transposon-mediated in situ molecular breeding. Appl Microbiol Biotechnol, 2018. 102(7): p. 3037-3048.
24. Schaefer, J.K., J. Letowski, and T. Barkay, mer -Mediated Resistance and Volatilization of Hg(II) Under Anaerobic Conditions. Geomicrobiology Journal, 2002. 19(1): p. 87-102.
25. Boyd, E.S. and T. Barkay, The mercury resistance operon: from an origin in a geothermal environment to an efficient detoxification machine. Front Microbiol, 2012. 3: p. 349.
26. Essa, A.M.M., The effect of a continuous mercury stress on mercury reducing community of some characterized bacterial strains. African Journal of Microbiology Research, 2012. 6(18): p. 4006-4012.
27. Mathema, V.B., B.C. Thakuri, and M. Sillanpaa, Bacterial mer operon-mediated detoxification of mercurial compounds: a short review. Arch Microbiol, 2011. 193(12): p. 837-44.
28. Miller, S.M., Bacterial detoxification of Hg(II) and organomercurials. Essays Biochem, 1999. 34: p. 17-30.
29. Schaefer, J.K., et al., Role of the bacterial organomercury lyase (MerB) in controlling methylmercury accumulation in mercury-contaminated natural waters. Environ Sci Technol, 2004. 38(16): p. 4304-11.
30. Steele, R.A. and S.J. Opella, Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry, 1997. 36(23): p. 6885-95.
31. Sone, Y., et al., Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in Escherichia coli. Biol Pharm Bull, 2013. 36(11): p. 1835-41.
32. Schue, M., et al., Evidence for direct interactions between the mercuric ion transporter (MerT) and mercuric reductase (MerA) from the Tn501 mer operon. Biometals, 2008. 21(2): p. 107-16.
33. Guo, H.B., et al., Structure and Conformational Dynamics of the Metalloregulator MerR upon Binding of Hg(II). Journal of Molecular Biology, 2010. 398(4): p. 555-568.
34. Dash, H.R. and S. Das, Bioremediation of mercury and the importance of bacterial mer genes. International Biodeterioration Biodegradation, 2012. 75: p. 207-213.
35. Chang, C.C., et al., Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR. Nucleic Acids Research, 2015. 43(15): p. 7612-7623.
36. Wang, D., et al., Structural Analysis of the Hg(II)-Regulatory Protein Tn501 MerR from Pseudomonas aeruginosa. Scientific Reports, 2016. 6.
37. Song, L.Y., et al., F-19-NMR reveals metal and operator-induced allostery in MerR. Journal of Molecular Biology, 2007. 371(1): p. 79-92.
38. Ansari, A.Z., J.E. Bradner, and T.V. Ohalloran, DNA-Bend Modulation in a Repressor-to-Activator Switching Mechanism. Nature, 1995. 374(6520): p. 371-375.
39. Rohs, R., et al., Origins of Specificity in Protein-DNA Recognition. Annual Review of Biochemistry, Vol 79, 2010. 79: p. 233-269.
40. Philips, S.J., et al., TRANSCRIPTION. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science, 2015. 349(6250): p. 877-81.
41. Murakami, K.S. and S.A. Darst, Bacterial RNA polymerases: the wholo story. Current Opinion in Structural Biology, 2003. 13(1): p. 31-39.
42. Browning, D.F. and S.J.W. Busby, Local and global regulation of transcription initiation in bacteria. Nature Reviews Microbiology, 2016. 14(10): p. 638-650.
43. Murakami, K.S., Structural Biology of Bacterial RNA Polymerase. Biomolecules, 2015. 5(2): p. 848-864.
44. Werner, F. and D. Grohmann, Evolution of multisubunit RNA polymerases in the three domains of life. Nature Reviews Microbiology, 2011. 9(2): p. 85-98.
45. Helmann, J.D., Where to begin? Sigma factors and the selectivity of transcription initiation in bacteria. Molecular Microbiology, 2019. 112(2): p. 335-347.
46. Feklistov, A., RNA polymerase: in search of promoters. Blavatnik Awards for Young Scientists 2012, 2013. 1293: p. 25-32.
47. Campbell, E.A., L.F. Westblade, and S.A. Darst, Regulation of bacterial RNA polymerase sigma factor activity: a structural perspective. Curr Opin Microbiol, 2008. 11(2): p. 121-7.
48. Narayanan, A., et al., Cryo-EM structure of Escherichia coli sigma(70) RNA polymerase and promoter DNA complex revealed a role of sigma non-conserved region during the open complex formation. Journal of Biological Chemistry, 2018. 293(19): p. 7367-7375.
49. Liu, B., et al., Structural basis of bacterial transcription activation. Science, 2017. 358(6365): p. 947-+.
50. Zuo, Y.H. and T.A. Steitz, Crystal Structures of the E. coli Transcription Initiation Complexes with a Complete Bubble. Molecular Cell, 2015. 58(3): p. 534-540.
51. Lee, D.J., S.D. Minchin, and S.J.W. Busby, Activating Transcription in Bacteria. Annual Review of Microbiology, Vol 66, 2012. 66: p. 125-152.
52. Zhou, Y., et al., Spacing requirements for Class I transcription activation in bacteria are set by promoter elements. Nucleic Acids Research, 2014. 42(14): p. 9209-9216.
53. Twist, K.A., et al., A novel method for the production of in vivo-assembled, recombinant Escherichia coli RNA polymerase lacking the alpha C-terminal domain. Protein Science, 2011. 20(6): p. 986-995.
54. Narayanan, A., et al., Cryo-EM structure of Escherichia coli sigma(70) RNA polymerase and promoter DNA complex revealed a role of sigma non-conserved region during the open complex formation. J Biol Chem, 2018. 293(19): p. 7367-7375.
55. Liu, B., et al., Structural basis of bacterial transcription activation. Science, 2017. 358(6365): p. 947-951.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49576-
dc.description.abstract細菌演化出對抗不同毒性金屬的操作組(operon)來在嚴苛的環境下生存,而其中的汞抗性操作組(mer operon)是最早被發現研究重金屬防禦系統之一。
汞抗性操作組可以製造對抗二價汞或是有機汞所需的去毒性蛋白和通道蛋白。汞抗性操作組受到雙重功能的轉錄調節因子(transcriptional regulator)MerR嚴密調控,在環境中沒有汞的存在下,原態(apo)的MerR會結合上轉錄調控區塊(operator/promoter),做為抑制子(repressor)的角色,反之當感應到環境中有汞存在時,MerR轉換為活化子(activator)的角色,透過本身的金屬結合區塊(metal binding domain)結合上汞金屬後,所產生構型轉變來帶動並扭曲(distort)汞抗性操作組DNA,使轉錄作用可以開始進行。然而,並沒有結構的資訊關於MerR是如何讓RNA聚合(RNA polymerase)順利結合上啟動子(promotor)序列並開始轉錄汞抗性操作組。所以本研究的目標是藉由得到MerR轉錄因子和RNA聚合一同結合上汞抗性操作組,所形成三者複合體的結構資訊來了解這個MerR家族轉錄因子是如何調控RNA 聚合轉錄這段被MerR扭曲的汞抗性操作組DNA。
到目前我們已經成功使用大腸桿菌系統表現並純化出全長的RNA聚合全酶(holoenzyme),RNA 聚合全酶為分子量極大的蛋白,由各一個β和β′次單位、兩個α次單位和一個ω次單位組成核心聚合酶(core enzyme),核心聚合酶最後會結合上σ因子形成具有功能且分子量約450 kDA的RNA 聚合酶全酶。我們在RNA 聚合酶α次單位上帶有10X His tag 和蛋白酶切位,在固定化金屬離子親和層析法純化後,使用蛋白酶切除His tag後,通過後續兩次離子交換層析增進蛋白純度後以膠體過濾層析管柱確認後,再和使用固定化金屬離子親和層析法和離子交換層析純化後的σ因子進行組裝,最終使用膠體過濾層析管柱得到高純度和正確構型的RNA 聚合酶全酶。我們的MerR蛋白會使用肝素(heparin)親和性管柱和膠體過濾層析管柱純化後,依序加入我們設計好的汞抗性操作組DNA和純化完成的RNA 聚合酶。等形成穩定複合體後,再次使用膠體過濾層析法,確認三者能形成一個約500 kDa穩定複合體後,利用戊二醛(glutaraldehyde)將我們的蛋白複合體進行交叉鍵接(crosslinking)反應,此步驟可以讓蛋白樣品在使用液態氮冷凍後維持在正確的複合體構型,不會因為冰晶形成破壞各次單位原先的交互作用。我們也可以設計不同的抗性操作組DNA或是將MerR轉錄因子處於活化子或是抑制子的不同條件組合下,利用冷凍電子顯微鏡技術,獲取RNA 聚合酶位於不同的構型,來幫助我們了解MerR轉錄因子是如何幫助轉錄作用進行的。
zh_TW
dc.description.abstractAll bacteria possess resistance systems (operons) in order to survive in environments containing toxic metal ions. The bacterial mercury resistance operon (mer operon) is one of the earliest discovered and best characterized toxic metal defense systems.
The mer operon encodes proteins that can detoxify and transport inorganic mercury (Hg2+) and organic mercury compounds. Expression of the mer operon proteins is under control by the dual-function transcriptional regulator MerR. In the absence of Hg2+, apo MerR binds to the mer operator/promoter (o/p) region and acts as a transcriptional repressor. In contrast, Hg2+-binding triggers structural transition of the MerR dimer to induce conformational change of o/p DNA, which initiates transcription. Currently, no structural information regarding the interplays between MerR, RNA polymerase (RNAP) holoenzyme and mer o/p are available. The goal of my thesis research is to characterize the 3D structure of RNAP in complex with MerR and mer o/p.
To this end, we have attempted to purify recombinant E.coli RNAP. The RNAP holoenzyme is about 450 kDa in size, containing a core enzyme formed by two α subunits, a single β, β′ and ω subunit, and one of the seven σ factors. We have obtained a RNAP construct with a protease recognition site introduced between at the N-terminal 10XHis tag and α subunit. After initial purification by immobilized metal ion affinity chromatography (IMAC), protease may be used to remove the N-terminal 10XHis tag. σ factor can be purified in order of IMAC, ion exchange chromatography, and size exclusion chromatography. The full length RNAP holoenzyme can be reconstituted by mixing the core enzyme with σ factor followed by size exclusion chromatography. MerR protein is purified in order of affinity chromatography, and size exclusion chromatography. For cryo-EM structural analysis, purified MerR protein (with or without mercury) was first incubated with mer o/p before the addition of RNAP holoenzyme. The ternary supramolecular complex was confirmed by size exclusion chromatography. Then, RNA polymerase holoenzyme ternary complex was crosslinked by glutaraldehyde to prevent liquid nitrogen treatment-induced protein ternary complex dissociation. After crosslinking, protein sample concentration was adjusted to 1 mg/ml for cryo-EM data collection. We can use different mer o/p DNA sequence design combined with Hg2+ to capture RNA polymerase in different stages during transcription initiation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:35:39Z (GMT). No. of bitstreams: 1
U0001-1208202011494700.pdf: 33001034 bytes, checksum: 8fa7fd98532781a71f9486b72f451537 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 II
中文摘要 III
Abstract V
縮寫表 VII
目錄 VIII
圖目錄 XI
表目錄 XIII
一、 緒論 1
1.1 毒性金屬抗性系統 1
1.2 汞金屬抗性轉錄因子家族 1
1.3 汞金屬抗性操作組 2
1.4 MerR轉錄因子結構 3
1.5 非典型操作組基因序列 4
1.6 原核生物轉錄作用調控 4
1.7 研究動機 5
二、 材料與方法 7
2.1 Sigma factor 表現和純化 7
2.1.1 蛋白之大量表現 7
2.1.2 破菌與蛋白萃取 7
2.1.3 液相層析 (liquid chromatography) 8
2.2 RNA polymerase表現和純化 10
2.2.1 蛋白之大量表現 10
2.2.2 破菌與蛋白萃取 10
2.2.3 硫酸銨沈澱 11
2.2.4 液相層析 (liquid chromatography) 11
2.3 MerR 表現和純化 14
2.3.1 蛋白之大量表現 14
2.3.2 破菌與蛋白萃取 15
2.3.3 液相層析 (liquid chromatography) 15
2.4 蛋白分析定量 17
2.4.1 膠體電泳 (Gel electrophoresis) 分析 17
2.5 蛋白質活性測試 18
2.5.1 凝膠遷移試驗(Electrophoretic mobility shift assay) 18
2.6 RNA polymerase holoenzyme複合物製備 20
2.6.1 RNA polymerase holoenzyme with MerR(apo/Hg2+ binding)-mer operon DNA 複合物製備 20
2.6.2 分子篩層析法 (size exclusion chromatography) 20
2.7 RNA polymerase holoenzyme複合物交叉鏈接 20
2.7.1 RNA polymerase holoenzyme with MerR(apo/Hg2+ binding)-mer operon DNA 複合物製備交叉鏈接(crosslinking) 20
三、 結果 22
3.1 Sigma factor 純化 22
3.1.1 鎳離子親和性管柱層析法(nickel-chelating affinity column chromatography) 22
3.1.2 陰離子交換層析法(anion-exchange chromatography) 22
3.1.3 膠體過濾層析法(gel filtration chromatography) 22
3.2 RNA polymerase 純化 23
3.2.1 鎳離子親和性管柱層析法(nickel-chelating affinity column chromatography) 23
3.2.2 陽離子交換層析法(cation-exchange chromatography) 23
3.2.3 陰離子交換層析法(anion-exchange chromatography) 24
3.2.4 膠體過濾層析法(gel filtration chromatography) 24
3.3 MerR 純化 25
3.3.1 肝素親和性管柱層析法(heparin affinity chromatography) 25
3.3.2 膠體過濾層析法(gel filtration chromatography) 25
3.4 蛋白活性測試 25
3.4.1 apo-MerR 凝膠遷移試驗(gel shift assay) 25
3.4.2 Hg2+-MerR 凝膠遷移試驗(gel shift assay) 26
3.5 冷凍電子顯微鏡樣品製備 26
3.5.1 膠體過濾層析法(gel filtration chromatography) 26
3.5.2 蛋白複合體crosslinking 27
3.6 冷凍電子顯微鏡結果 27
3.6.1 Hg2+-MerR、RNA polymerase holoenzyme和mer operon複合體於200 kV Talos影像 27
四、 討論 29
4.1 蛋白質純化 29
4.2 蛋白複合體組裝 30
4.3 不同構型RNA聚合酶結構獲得 30
圖 32
表 54
參考資料 57
dc.language.isozh-TW
dc.title以結構學探討汞離子誘發雙重功能轉錄調節因子MerR構型變換如何調控轉錄作用zh_TW
dc.titleStructural Basis of Transcriptional Regulation via the Hg2+ Mediated Dual-Function Transcriptional Regulator MerRen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾秀如(Shiou-Ru Tzeng),徐駿森(Chun-Hua Hsu)
dc.subject.keyword汞抗性操作組,轉錄調節因子,MerR家族蛋白,RNA 聚合酶,冷凍電子顯微鏡,zh_TW
dc.subject.keywordmer operon,transcriptional regulator,MerR,RNA polymerase,cryo-EM,en
dc.relation.page60
dc.identifier.doi10.6342/NTU202003066
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
U0001-1208202011494700.pdf
  目前未授權公開取用
32.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved