Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49572
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊宏志
dc.contributor.authorYu-Hsiang Chenen
dc.contributor.author陳煜翔zh_TW
dc.date.accessioned2021-06-15T11:35:26Z-
dc.date.available2018-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citation1. Tatematsu, K., et al., A genetic variant of hepatitis B virus divergent from known human and ape genotypes isolated from a Japanese patient and provisionally assigned to new genotype J. J Virol, 2009. 83(20): p. 10538-47.
2. Hahn, C.M., et al., Characterization of a Novel Hepadnavirus in the White Sucker (Catostomus commersonii) from the Great Lakes Region of the United States. J Virol, 2015. 89(23): p. 11801-11.
3. Heermann, K.H., et al., Large surface proteins of hepatitis B virus containing the pre-s sequence. J Virol, 1984. 52(2): p. 396-402.
4. Chai, N., et al., Properties of subviral particles of hepatitis B virus. J Virol, 2008. 82(16): p. 7812-7.
5. Bruns, M., et al., Enhancement of hepatitis B virus infection by noninfectious subviral particles. J Virol, 1998. 72(2): p. 1462-8.
6. Quarleri, J., Core promoter: a critical region where the hepatitis B virus makes decisions. World J Gastroenterol, 2014. 20(2): p. 425-35.
7. Melegari, M., S.K. Wolf, and R.J. Schneider, Hepatitis B virus DNA replication is coordinated by core protein serine phosphorylation and HBx expression. J Virol, 2005. 79(15): p. 9810-20.
8. Pollicino, T., et al., Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology, 2006. 130(3): p. 823-37.
9. Yan, H., et al., Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife, 2012. 1.
10. Schulze, A., P. Gripon, and S. Urban, Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology, 2007. 46(6): p. 1759-68.
11. Kock, J., et al., Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner. PLoS Pathog, 2010. 6(9): p. e1001082.
12. Ott, J.J., et al., Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine, 2012. 30(12): p. 2212-9.
13. Zhu, Y., et al., Kinetics of hepadnavirus loss from the liver during inhibition of viral DNA synthesis. J Virol, 2001. 75(1): p. 311-22.
14. Addison, W.R., et al., Half-life of the duck hepatitis B virus covalently closed circular DNA pool in vivo following inhibition of viral replication. J Virol, 2002. 76(12): p. 6356-63.
15. Werle–Lapostolle, B., et al., Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy1 ☆. Gastroenterology, 2004. 126(7): p. 1750-1758.
16. Gao, W. and J. Hu, Formation of hepatitis B virus covalently closed circular DNA: removal of genome-linked protein. J Virol, 2007. 81(12): p. 6164-74.
17. Guo, H., et al., Characterization of the intracellular deproteinized relaxed circular DNA of hepatitis B virus: an intermediate of covalently closed circular DNA formation. J Virol, 2007. 81(22): p. 12472-84.
18. Koniger, C., et al., Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. Proc Natl Acad Sci U S A, 2014. 111(40): p. E4244-53.
19. Cui, X., et al., Does Tyrosyl DNA Phosphodiesterase-2 Play a Role in Hepatitis B Virus Genome Repair? PLoS One, 2015. 10(6): p. e0128401.
20. Zhou, T., et al., Hepatitis B virus e antigen production is dependent upon covalently closed circular (ccc) DNA in HepAD38 cell cultures and may serve as a cccDNA surrogate in antiviral screening assays. Antiviral Res, 2006. 72(2): p. 116-24.
21. Gripon, P., et al., Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A, 2002. 99(24): p. 15655-60.
22. Stieger, B., The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol, 2011(201): p. 205-59.
23. Ni, Y., et al., Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology, 2014. 146(4): p. 1070-83.
24. Yan, H., et al., Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide. J Virol, 2014. 88(6): p. 3273-84.
25. Yan, R., et al., Spinoculation Enhances HBV Infection in NTCP-Reconstituted Hepatocytes. PLoS One, 2015. 10(6): p. e0129889.
26. Cai, D., et al., Identification of disubstituted sulfonamide compounds as specific inhibitors of hepatitis B virus covalently closed circular DNA formation. Antimicrob Agents Chemother, 2012. 56(8): p. 4277-88.
27. Cai, D., et al., Establishment of an inducible HBV stable cell line that expresses cccDNA-dependent epitope-tagged HBeAg for screening of cccDNA modulators. Antiviral Res, 2016. 132: p. 26-37.
28. Ho, T.C., et al., Effects of genomic length on translocation of hepatitis B virus polymerase-linked oligomer. J Virol, 2000. 74(19): p. 9010-8.
29. Hong, R., et al., Novel recombinant hepatitis B virus vectors efficiently deliver protein and RNA encoding genes into primary hepatocytes. J Virol, 2013. 87(12): p. 6615-24.
30. Nishitsuji, H., et al., A novel reporter system to monitor early stages of the HBV life cycle. Cancer Sci, 2015.
31. Wang, Z., et al., Replication-competent infectious hepatitis B virus vectors carrying substantially sized transgenes by redesigned viral polymerase translation. PLoS One, 2013. 8(4): p. e60306.
32. Lentz, T.B. and D.D. Loeb, Roles of the envelope proteins in the amplification of covalently closed circular DNA and completion of synthesis of the plus-strand DNA in hepatitis B virus. J Virol, 2011. 85(22): p. 11916-27.
33. Kim, S., J. Lee, and W.S. Ryu, Four conserved cysteine residues of the hepatitis B virus polymerase are critical for RNA pregenome encapsidation. J Virol, 2009. 83(16): p. 8032-40.
34. Mukherjee, A., et al., Characterization of flavin-based fluorescent proteins: an emerging class of fluorescent reporters. PLoS One, 2013. 8(5): p. e64753.
35. Mukherjee, A. and C.M. Schroeder, Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Curr Opin Biotechnol, 2015. 31: p. 16-23.
36. van den Wollenberg, D.J., et al., Replicating reoviruses with a transgene replacing the codons for the head domain of the viral spike. Gene Ther, 2015. 22(3): p. 267-79.
37. Nassal, M., The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. J Virol, 1992. 66(7): p. 4107-16.
38. Ning, X., et al., Secretion of genome-free hepatitis B virus--single strand blocking model for virion morphogenesis of para-retrovirus. PLoS Pathog, 2011. 7(9): p. e1002255.
39. Bartenschlager, R. and H. Schaller, Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. EMBO J, 1992. 11(9): p. 3413-20.
40. Yao, E., H. Schaller, and J.E. Tavis, The duck hepatitis B virus polymerase and core proteins accumulate in different patterns from their common mRNA. Virology, 2003. 311(1): p. 81-8.
41. Ren, Q., et al., A Dual-reporter system for real-time monitoring and high-throughput CRISPR/Cas9 library screening of the hepatitis C virus. Sci Rep, 2015. 5: p. 8865.
42. Su, W.C., et al., Pooled RNAi screen identifies ubiquitin ligase Itch as crucial for influenza A virus release from the endosome during virus entry. Proc Natl Acad Sci U S A, 2013. 110(43): p. 17516-21.
43. Root, D.E., et al., Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat Methods, 2006. 3(9): p. 715-9.
44. Lohmann, V., et al., Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science, 1999. 285(5424): p. 110-3.
45. Blight, K.J., A.A. Kolykhalov, and C.M. Rice, Efficient initiation of HCV RNA replication in cell culture. Science, 2000. 290(5498): p. 1972-4.
46. Saeed, M., et al., SEC14L2 enables pan-genotype HCV replication in cell culture. Nature, 2015. 524(7566): p. 471-5.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49572-
dc.description.abstractB型肝炎病毒感染會造成肝硬化與肝癌。雖然已有有效之疫苗可以預防感染,目前全世界仍有2.4億人帶有慢性B型肝炎病毒感染,且每年約有78萬人死於B型肝炎相關併發症。日前治療上主要使用的藥物為核苷類似物與干擾素兩大類,然而這兩種藥物只能抑制病程的進行以及癌症發生率而不能完全清除病毒,原因為此藥物無法針對病毒之共價閉合環狀DNA (covalently closed circular DNA, cccDNA) 進行降解。病毒之cccDNA被發現會於細胞內穩定存在,且此DNA為病毒轉錄之模板,其會轉錄出病毒的RNA。病毒會利用pregenomic RNA (pgRNA) 進行反轉錄而完成複製,故只要cccDNA仍存在於細胞中,病毒就有可能伺機而起。cccDNA由病毒之relaxed circular DNA (rcDNA) 轉變而來,科學家認為此過程需由宿主的DNA修復蛋白協助,然而目前尚不清楚哪些宿主蛋白參與cccDNA形成或其穩定。為了發展興新藥物以及了解B型肝炎病毒學,我們必須更了解此過程。為此,目前已有許多科學家嘗試將病毒做成載體,攜帶著外來基因作為報告基因,希望藉由高通量篩選的方式了解病毒複製過程中參與的宿主基因或開發藥物。然而目前所建立之報告系統多用於陣列篩選 (Arrayed screening) 。另一方面,能用來做匯集篩選 (Pooled screening) 的載體其感染的效率並未被分析,且其重組病毒之複製能力令人質疑。為了以Pooled screening進行全基因組的分析,進而了解參與病毒複製過程中的宿主基因,本研究建立了攜帶著抗藥性基因與小綠色螢光蛋白的重組病毒載體,並分析此載體於細胞複製之能力、產生病毒之能力以及報告基因之表現量。最後,我們也建立一株表達B型肝炎病毒核心抗原的細胞,並分析重組病毒感染此細胞之能力。zh_TW
dc.description.abstractHepatitis B virus (HBV) is the causative agent of chronic hepatitis B, which often leads to liver cirrhosis and hepatocellular carcinoma. Although current vaccines can prevent the infection of HBV, there are 240 million chronic HBV carriers worldwide and more than 780,000 people decease every year due to the complications. Current treatment for chronic HBV infection includes nucleos(t)ide analogues (NAs) and interferon-alpha (IFN-α). However, current therapies only retard the progression of disease and reduce the incidence of liver cancer but do not cure hepatitis B infection due to their little effect on viral covalently closed circular DNA (cccDNA) stability. It has been shown that cccDNA is stable in non-dividing hepatocytes after infection. As the viral transcriptional template, cccDNA is transcribed into viral pregenomic RNA (pgRNA) and subgenomic RNAs (sgRNAs). The pgRNA is subsequently reversely transcribed into viral relaxed circular DNA (rcDNA) to complete the viral replication cycle. Hence, the persistence of cccDNA is considered the main reason for viral relapse after drug withdraw. It is generally assumed that cccDNA is converted from rcDNA through the host repair machinery. However, the detailed mechanisms and host factors participating in this process remain unknown. A variety of recombinant viral vectors have been developed in hopes of unraveling the process. However, most existing HBV reporter systems were designed for arrayed screening; other recombinant viral vectors which can be used to perform pooled screening lack the assessment of the infectivity. In order to identify host genes involved in HBV replication through the genome-wide screening, we created recombinant HBV vectors carrying blasticidin-S-deaminase, conferring resistance to Blasticidin S, and iLOV, a FMN-binding fluorescent protein. We proved that our recombinant HBV reporter systems were functional in the replication, virion production and cargo gene expression in human hepatoma cell lines. Besides, we also established a cell line which expresses the HBV core protein, and evaluated the infectivity of the virus for this cell line. Although the infectivity of the virus still requires further investigation, the recombinant vectors will be a robust tool to study HBV replication as long as the infectivity is finally confirmed.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:35:26Z (GMT). No. of bitstreams: 1
ntu-105-R03445109-1.pdf: 1986594 bytes, checksum: e4e7eca736d934fd10914ebe54436780 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 IV
中文摘要 VI
ABSTRACT VIII
1. INTRODUCTION 1
1.1 Classification of Hepatitis B Virus 1
1.2 Virion Structure and Viral Proteins of HBV 1
1.3 Viral Replication Cycle 3
1.4 Current Treatment and Persistence of HBV Infection 4
1.5 The Studies of cccDNA 4
1.6 Challenges to Study HBV Replication and A New Culture Model for HBV Infection 6
1.7 Current HBV Reporter Systems 7
1.7.1 cccDNA reporter systems in HBV-expressing cell lines 7
1.7.2 Recombinant hepatitis B virus vectors used to study HBV infection 9
2. SPECIFIC AIMS 12
3. MATERIALS AND METHODS 13
3.1 Cell Lines and Cell Culture 13
3.2 Plasmid constructs 13
3.3 DNA Transfection 14
3.4 Establishment of Core-expressing HepG2-NTCP-Core Cell Line 15
3.5 DIG-labeled Probe Synthesis 16
3.6 Extraction of Viral Nucleic Acid 16
3.7 Southern Blot Analysis 18
3.8 Northern Blot Analysis 19
3.9 Western Blot Analysis 20
3.10 Preparation of Recombinant HBV Virions 21
3.11 Native Agarose Gel Analysis of HBV Virions 22
3.12 Quantification of Extracellular HBV DNA by qPCR 22
3.13 HBV Infection 23
3.14 Immunofluorescence Assay 23
4. RESULTS 24
4.1 Construction of Recombinant HBV Vectors 24
4.2 Establishment of Core-expressing Cell Line 24
4.3 Evaluation of RNA and Cargo Genes Expression from rHBV Vectors 25
4.4 Assessment of rHBV Replication Efficiency 26
4.5 Characterization of Virion Production by rHBV 26
4.6 Infection of HepG2-NTCP-Core with rHBV Vectors 28
5. DISCUSSION 29
6. FIGURES 34
Figure 1. Schematic representation of constructs used to produce virus. 34
Figure 2. Establishment of cell lines expressing HBV core in a tetracycline-inducible manner. 35
Figure 3. Analysis of RNA expression driven by the authentic HBV promoter from the recombinant HBV vectors. 36
Figure 4. The reporter gene expression from recombinant HBV pgRNA driven by the CMV promoter. 38
Figure 5. Replication efficiency of the recombinant HBV vectors. 39
Figure 6. Production of the recombinant virions by trans-complementation. 41
Figure 7. Infection of HepG2-NTCP-Core cells with recombinant HBV. 42
REFERENCES 43
SUPPREMENTARY INFORMATION 48
Supplementary figure 1. Establishment of reporter systems based on transfection 49
dc.language.isoen
dc.subject重組病毒zh_TW
dc.subject報告系統zh_TW
dc.subject高通量篩選zh_TW
dc.subjectB 型肝炎病毒zh_TW
dc.subjectcccDNAzh_TW
dc.subjectPooled library screeningen
dc.subjectHepatitis B virusen
dc.subjectReporter systemen
dc.subjectcccDNAen
dc.subjectRecombinant viral vectoren
dc.title建立B型肝炎病毒感染之報告系統zh_TW
dc.titleTo Establish a Reporter System for Hepatitis B Virus Infectionen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳培哲,董馨蓮
dc.subject.keywordB 型肝炎病毒,cccDNA,高通量篩選,報告系統,重組病毒,zh_TW
dc.subject.keywordHepatitis B virus,cccDNA,Reporter system,Pooled library screening,Recombinant viral vector,en
dc.relation.page49
dc.identifier.doi10.6342/NTU201602590
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved