Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49560
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor董馨蓮
dc.contributor.authorChien-Li Fangen
dc.contributor.author方建麗zh_TW
dc.date.accessioned2021-06-15T11:34:48Z-
dc.date.available2018-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citationAkagi, T., M. Motegi, A. Tamura, R. Suzuki, Y. Hosokawa, H. Suzuki, H. Ota, et al. 1999. 'A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue', Oncogene, 18: 5785-5794.
Baens, M., L. Bonsignore, R. Somers, C. Vanderheydt, S. D. Weeks, J. Gunnarsson, E. Nilsson, R. G. Roth, M. Thome, and P. Marynen. 2014. 'MALT1 auto-proteolysis is essential for NF-kappaB-dependent gene transcription in activated lymphocytes', PLoS One, 9: e103774.
Beaudoin, M., P. Goyette, G. Boucher, K. S. Lo, M. A. Rivas, C. Stevens, A. Alikashani, et al. 2013. 'Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis', PLoS Genet, 9: e1003723.
Bertin, J., Y. Guo, L. Wang, S. M. Srinivasula, M. D. Jacobson, J. L. Poyet, S. Merriam, et al. 2000. 'CARD9 is a novel caspase recruitment domain-containing protein that interacts with BCL10/CLAP and activates NF-kappa B', J Biol Chem, 275: 41082-41086.
Bertin, J., L. Wang, Y. Guo, M. D. Jacobson, J. L. Poyet, S. M. Srinivasula, S. Merriam, P. S. DiStefano, and E. S. Alnemri. 2001. 'CARD11 and CARD14 are novel caspase recruitment domain (CARD)/membrane-associated guanylate kinase (MAGUK) family members that interact with BCL10 and activate NF-kappa B', J Biol Chem, 276: 11877-11882.
Bidere, N., V. N. Ngo, J. Lee, C. Collins, L. Zheng, F. Wan, R. E. Davis, et al. 2009. 'Casein kinase 1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival', Nature, 458: 92-96.
Blonska, M., and X. Lin. 2009. 'CARMA1-mediated NF-kappa B and JNK activation in lymphocytes', Immunol. Rev., 228: 199-211.
Blonska, M., and X. Lin. 2011. 'NF-kappaB signaling pathways regulated by CARMA family of scaffold proteins', Cell Res, 21: 55-70.
Bornancin, F., F. Renner, R. Touil, H. Sic, Y. Kolb, I. Touil-Allaoui, J. S. Rush, et al. 2015. 'Deficiency of MALT1 paracaspase activity results in unbalanced regulatory and effector T and B cell responses leading to multiorgan inflammation', J Immunol, 194: 3723-3734.
Brenner, D., M. Brechmann, S. Rohling, M. Tapernoux, T. Mock, D. Winter, W. D. Lehmann, et al. 2009. 'Phosphorylation of CARMA1 by HPK1 is critical for NF-kappaB activation in T cells', Proc Natl Acad Sci U S A, 106: 14508-14513.
Demeyer, A., J. Staal, and R. Beyaert. 2016. 'Targeting MALT1 Proteolytic Activity in Immunity, Inflammation and Disease: Good or Bad?', Trends Mol Med, 22: 135-150.
Dierlamm, J., M. Baens, I. Wlodarska, M. Stefanova-Ouzounova, J. M. Hernandez, D. K. Hossfeld, C. De Wolf-Peeters, A. Hagemeijer, H. Van den Berghe, and P. Marynen. 1999. 'The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas', Blood, 93: 3601-3609.
Du, M. Q. 2007. 'MALT lymphoma : recent advances in aetiology and molecular genetics', J Clin Exp Hematop, 47: 31-42.
Egawa, T., B. Albrecht, B. Favier, M. J. Sunshine, K. Mirchandani, W. O'Brien, M. Thome, and D. R. Littman. 2003. 'Requirement for CARMA1 in antigen receptor-induced NF-kappa B activation and lymphocyte proliferation', Curr Biol, 13: 1252-1258.
Elton, L., I. Carpentier, J. Staal, Y. Driege, M. Haegman, and R. Beyaert. 2016. 'MALT1 cleaves the E3 ubiquitin ligase HOIL-1 in activated T cells, generating a dominant negative inhibitor of LUBAC-induced NF-kappaB signaling', FEBS J, 283: 403-412.
Elton, L., I. Carpentier, K. Verhelst, J. Staal, and R. Beyaert. 2015. 'The multifaceted role of the E3 ubiquitin ligase HOIL-1: beyond linear ubiquitination', Immunol Rev, 266: 208-221.
Evans, D. M., C. C. Spencer, J. J. Pointon, Z. Su, D. Harvey, G. Kochan, U. Oppermann, et al. 2011. 'Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility', Nat Genet, 43: 761-767.
Fontan, L., and A. Melnick. 2013. 'Molecular pathways: targeting MALT1 paracaspase activity in lymphoma', Clin Cancer Res, 19: 6662-6668.
Gaide, O., B. Favier, D. F. Legler, D. Bonnet, B. Brissoni, S. Valitutti, C. Bron, J. Tschopp, and M. Thome. 2002. 'CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-kappa B activation', Nat Immunol, 3: 836-843.
Gaide, O., F. Martinon, O. Micheau, D. Bonnet, M. Thome, and J. Tschopp. 2001. 'Carma1, a CARD-containing binding partner of Bcl10, induces Bcl10 phosphorylation and NF-kappaB activation', FEBS Lett, 496: 121-127.
Gauld, S. B., J. M. Dal Porto, and J. C. Cambier. 2002. 'B cell antigen receptor signaling: roles in cell development and disease', Science, 296: 1641-1642.
Gewies, A., O. Gorka, H. Bergmann, K. Pechloff, F. Petermann, K. M. Jeltsch, M. Rudelius, et al. 2014. 'Uncoupling Malt1 threshold function from paracaspase activity results in destructive autoimmune inflammation', Cell Rep, 9: 1292-1305.
Gilmore, T. D. 2006. 'Introduction to NF-kappaB: players, pathways, perspectives', Oncogene, 25: 6680-6684.
Glocker, E. O., A. Hennigs, M. Nabavi, A. A. Schaffer, C. Woellner, U. Salzer, D. Pfeifer, et al. 2009. 'A homozygous CARD9 mutation in a family with susceptibility to fungal infections', N Engl J Med, 361: 1727-1735.
Gross, O., A. Gewies, K. Finger, M. Schafer, T. Sparwasser, C. Peschel, I. Forster, and J. Ruland. 2006. 'Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity', Nature, 442: 651-656.
Gross, O., C. Grupp, C. Steinberg, S. Zimmermann, D. Strasser, N. Hannesschlager, W. Reindl, et al. 2008. 'Multiple ITAM-coupled NK-cell receptors engage the Bcl10/Malt1 complex via Carma1 for NF-kappaB and MAPK activation to selectively control cytokine production', Blood, 112: 2421-2428.
Hachmann, J., S. J. Snipas, B. J. van Raam, E. M. Cancino, E. J. Houlihan, M. Poreba, P. Kasperkiewicz, M. Drag, and G. S. Salvesen. 2012. 'Mechanism and specificity of the human paracaspase MALT1', Biochem J, 443: 287-295.
Hailfinger, S., G. Lenz, V. Ngo, A. Posvitz-Fejfar, F. Rebeaud, M. Guzzardi, E. M. Penas, et al. 2009. 'Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma', Proc Natl Acad Sci U S A, 106: 19946-19951.
Hailfinger, S., H. Nogai, C. Pelzer, M. Jaworski, K. Cabalzar, J. E. Charton, M. Guzzardi, et al. 2011. 'Malt1-dependent RelB cleavage promotes canonical NF-kappaB activation in lymphocytes and lymphoma cell lines', Proc Natl Acad Sci U S A, 108: 14596-14601.
Hara, H., E. Iizasa, M. Nakaya, and H. Yoshida. 2010. 'L-CBM signaling in lymphocyte development and function', J Blood Med, 1: 93-104.
Hara, H., C. Ishihara, A. Takeuchi, T. Imanishi, L. Xue, S. W. Morris, M. Inui, et al. 2007. 'The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors', Nat Immunol, 8: 619-629.
Hara, H., C. Ishihara, A. Takeuchi, L. Q. Xue, S. W. Morris, J. M. Penninger, H. Yoshida, and T. Saito. 2008. 'Cell type-specific regulation of ITAM-mediated NF-kappa B activation by the adaptors, CARMA1 and CARD9', J Immunol, 181: 918-930.
Hara, H., and T. Saito. 2009. 'CARD9 versus CARMA1 in innate and adaptive immunity', Trends Immunol, 30: 234-242.
Hara, H., T. Wada, C. Bakal, I. Kozieradzki, S. Suzuki, N. Suzuki, M. Nghiem, et al. 2003. 'The MAGUK family protein CARD11 is essential for lymphocyte activation', Immunity, 18: 763-775.
Hayden, M. S., and S. Ghosh. 2008. 'Shared principles in NF-kappa B signaling', Cell, 132: 344-362.
Hsu, Y. M., Y. Zhang, Y. You, D. Wang, H. Li, O. Duramad, X. F. Qin, C. Dong, and X. Lin. 2007. 'The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens', Nat Immunol, 8: 198-205.
Hutti, J. E., R. R. Shen, D. W. Abbott, A. Y. Zhou, K. M. Sprott, J. M. Asara, W. C. Hahn, and L. C. Cantley. 2009. 'Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKepsilon promotes cell transformation', Mol Cell, 34: 461-472.
Isaacson, P. G., and M. Q. Du. 2004. 'MALT lymphoma: from morphology to molecules', Nat Rev Cancer, 4: 644-653.
Ishiguro, K., T. Green, J. Rapley, H. Wachtel, C. Giallourakis, A. Landry, Z. Cao, et al. 2006. 'Ca2+/calmodulin-dependent protein kinase II is a modulator of CARMA1-mediated NF-kappaB activation', Mol Cell Biol, 26: 5497-5508.
Jacobs, M. D., and S. C. Harrison. 1998. 'Structure of an IkappaBalpha/NF-kappaB complex', Cell, 95: 749-758.
Jaworski, M., B. J. Marsland, J. Gehrig, W. Held, S. Favre, S. A. Luther, M. Perroud, D. Golshayan, O. Gaide, and M. Thome. 2014. 'Malt1 protease inactivation efficiently dampens immune responses but causes spontaneous autoimmunity', EMBO J, 33: 2765-2781.
Jeltsch, K. M., D. Hu, S. Brenner, J. Zoller, G. A. Heinz, D. Nagel, K. U. Vogel, et al. 2014. 'Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T(H)17 differentiation', Nat Immunol, 15: 1079-1089.
Jordan, C. T., L. Cao, E. D. Roberson, K. C. Pierson, C. F. Yang, C. E. Joyce, C. Ryan, et al. 2012. 'PSORS2 is due to mutations in CARD14', Am J Hum Genet, 90: 784-795.
Jura, J., L. Skalniak, and A. Koj. 2012. 'Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) is a novel multifunctional modulator of inflammatory reactions', Biochim Biophys Acta, 1823: 1905-1913.
Kane, L. P., J. Lin, and A. Weiss. 2002. 'It's all Rel-ative: NF-kappaB and CD28 costimulation of T-cell activation', Trends Immunol, 23: 413-420.
Kishida, S., H. Sanjo, S. Akira, K. Matsumoto, and J. Ninomiya-Tsuji. 2005. 'TAK1-binding protein 2 facilitates ubiquitination of TRAF6 and assembly of TRAF6 with IKK in the IL-1 signaling pathway', Genes Cells, 10: 447-454.
Lamkanfi, M., N. Festjens, W. Declercq, T. Vanden Berghe, and P. Vandenabeele. 2007. 'Caspases in cell survival, proliferation and differentiation', Cell Death Differ, 14: 44-55.
Lee, K. Y., F. D'Acquisto, M. S. Hayden, J. H. Shim, and S. Ghosh. 2005. 'PDK1 nucleates T cell receptor-induced signaling complex for NF-kappaB activation', Science, 308: 114-118.
Leppek, K., J. Schott, S. Reitter, F. Poetz, M. C. Hammond, and G. Stoecklin. 2013. 'Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs', Cell, 153: 869-881.
Levine, E. G., D. C. Arthur, J. Machnicki, G. Frizzera, D. Hurd, B. Peterson, K. J. Gajl-Peczalska, and C. D. Bloomfield. 1989. 'Four new recurring translocations in non-Hodgkin lymphoma', Blood, 74: 1796-1800.
Li, S., X. Yang, J. Shao, and Y. Shen. 2012. 'Structural insights into the assembly of CARMA1 and BCL10', PLoS One, 7: e42775.
Lucas, P. C., P. Kuffa, S. Gu, D. Kohrt, D. S. Kim, K. Siu, X. Jin, J. Swenson, and L. M. McAllister-Lucas. 2007. 'A dual role for the API2 moiety in API2-MALT1-dependent NF-kappaB activation: heterotypic oligomerization and TRAF2 recruitment', Oncogene, 26: 5643-5654.
Malinverni, C., A. Unterreiner, J. Staal, A. Demeyer, M. Galaup, M. Luyten, R. Beyaert, and F. Bornancin. 2010. 'Cleavage by MALT1 induces cytosolic release of A20', Biochem Biophys Res Commun, 400: 543-547.
Maul, R. S., and D. D. Chang. 1999. 'EPLIN, epithelial protein lost in neoplasm', Oncogene, 18: 7838-7841.
Moreno-Garcia, M. E., K. Sommer, H. Shinohara, A. D. Bandaranayake, T. Kurosaki, and D. J. Rawlings. 2010. 'MAGUK-controlled ubiquitination of CARMA1 modulates lymphocyte NF-kappaB activity', Mol Cell Biol, 30: 922-934.
Morgan, J. A., Y. Yin, A. D. Borowsky, F. Kuo, N. Nourmand, J. I. Koontz, C. Reynolds, et al. 1999. 'Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18', Cancer Res, 59: 6205-6213.
Narayan, P., B. Holt, R. Tosti, and L. P. Kane. 2006. 'CARMA1 is required for Akt-mediated NF-kappaB activation in T cells', Mol Cell Biol, 26: 2327-2336.
Nie, Z., M. Q. Du, L. M. McAllister-Lucas, P. C. Lucas, N. G. Bailey, C. M. Hogaboam, M. S. Lim, and K. S. Elenitoba-Johnson. 2015. 'Conversion of the LIMA1 tumour suppressor into an oncogenic LMO-like protein by API2-MALT1 in MALT lymphoma', Nat Commun, 6: 5908.
O'Donnell, M. A., E. Perez-Jimenez, A. Oberst, A. Ng, R. Massoumi, R. Xavier, D. R. Green, and A. T. Ting. 2011. 'Caspase 8 inhibits programmed necrosis by processing CYLD', Nat Cell Biol, 13: 1437-1442.
Palkowitsch, L., U. Marienfeld, C. Brunner, A. Eitelhuber, D. Krappmann, and R. B. Marienfeld. 2011. 'The Ca2+-dependent phosphatase calcineurin controls the formation of the Carma1-Bcl10-Malt1 complex during T cell receptor-induced NF-kappaB activation', J Biol Chem, 286: 7522-7534.
Poeck, H., M. Bscheider, O. Gross, K. Finger, S. Roth, M. Rebsamen, N. Hannesschlager, et al. 2010. 'Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production', Nat Immunol, 11: 63-69.
Pomerantz, J. L., E. M. Denny, and D. Baltimore. 2002. 'CARD11 mediates factor-specific activation of NF-kappaB by the T cell receptor complex', EMBO J, 21: 5184-5194.
Qiao, Q., C. Yang, C. Zheng, L. Fontan, L. David, X. Yu, C. Bracken, et al. 2013. 'Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly', Mol Cell, 51: 766-779.
Rebeaud, F., S. Hailfinger, A. Posevitz-Fejfar, M. Tapernoux, R. Moser, D. Rueda, O. Gaide, et al. 2008. 'The proteolytic activity of the paracaspase MALT1 is key in T cell activation', Nat Immunol, 9: 272-281.
Reikine, S., J. B. Nguyen, and Y. Modis. 2014. 'Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5', Front. Immunol., 5: 342.
Rivas, M. A., M. Beaudoin, A. Gardet, C. Stevens, Y. Sharma, C. K. Zhang, G. Boucher, et al. 2011. 'Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease', Nat Genet, 43: 1066-1073.
Rosebeck, S., L. Madden, X. Jin, S. Gu, I. J. Apel, A. Appert, R. A. Hamoudi, et al. 2011. 'Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation', Science, 331: 468-472.
Roth, S., and J. Ruland. 2013. 'Caspase recruitment domain-containing protein 9 signaling in innate immunity and inflammation', Trends Immunol, 34: 243-250.
Ruben, S. M., J. F. Klement, T. A. Coleman, M. Maher, C. H. Chen, and C. A. Rosen. 1992. 'I-Rel: a novel rel-related protein that inhibits NF-kappa B transcriptional activity', Genes Dev, 6: 745-760.
Rueda, D., and M. Thome. 2005. 'Phosphorylation of CARMA1: the link(er) to NF-kappaB activation', Immunity, 23: 551-553.
Ruland, J. 2008. 'CARD9 signaling in the innate immune response', Ann N Y Acad Sci, 1143: 35-44.
Ruland, J., G. S. Duncan, A. Wakeham, and T. W. Mak. 2003. 'Differential requirement for Malt1 in T and B cell antigen receptor signaling', Immunity, 19: 749-758.
Samelson, L. E. 2002. 'Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins', Annu Rev Immunol, 20: 371-394.
Schmitt, A., P. Grondona, T. Maier, M. Brandle, C. Schonfeld, G. Jager, C. Kosnopfel, et al. 2016. 'MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation', J Invest Dermatol, 136: 788-797.
Scudiero, I., T. Zotti, A. Ferravante, M. Vessichelli, P. Vito, and R. Stilo. 2011. 'Alternative splicing of CARMA2/CARD14 transcripts generates protein variants with differential effect on NF-kappaB activation and endoplasmic reticulum stress-induced cell death', J Cell Physiol, 226: 3121-3131.
Shembade, N., A. Ma, and E. W. Harhaj. 2010. 'Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes', Science, 327: 1135-1139.
Shinohara, H., T. Yasuda, Y. Aiba, H. Sanjo, M. Hamadate, H. Watarai, H. Sakurai, and T. Kurosaki. 2005. 'PKC beta regulates BCR-mediated IKK activation by facilitating the interaction between TAK1 and CARMA1', J Exp Med, 202: 1423-1431.
Sommer, K., B. Guo, J. L. Pomerantz, A. D. Bandaranayake, M. E. Moreno-Garcia, Y. L. Ovechkina, and D. J. Rawlings. 2005. 'Phosphorylation of the CARMA1 linker controls NF-kappaB activation', Immunity, 23: 561-574.
Staal, J., Y. Driege, T. Bekaert, A. Demeyer, D. Muyllaert, P. Van Damme, K. Gevaert, and R. Beyaert. 2011. 'T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1', EMBO J, 30: 1742-1752.
Strasser, D., K. Neumann, H. Bergmann, M. J. Marakalala, R. Guler, A. Rojowska, K. P. Hopfner, et al. 2012. 'Syk kinase-coupled C-type lectin receptors engage protein kinase C-sigma to elicit Card9 adaptor-mediated innate immunity', Immunity, 36: 32-42.
Sun, J. Y., and X. Lin. 2008. 'beta-Arrestin 2 is required for lysophosphatidic acid-induced NF-kappa B activation', Proc Natl Acad Sci USA, 105: 17085-17090.
Sun, L., L. Deng, C. K. Ea, Z. P. Xia, and Z. J. Chen. 2004. 'The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes', Mol Cell, 14: 289-301.
Sun, S. C. 2011. 'Non-canonical NF-kappaB signaling pathway', Cell Res, 21: 71-85.
Tanner, M. J., W. Hanel, S. L. Gaffen, and X. Lin. 2007. 'CARMA1 coiled-coil domain is involved in the oligomerization and subcellular localization of CARMA1 and is required for T cell receptor-induced NF-kappaB activation', J Biol Chem, 282: 17141-17147.
Thome, M. 2004. 'CARMA1, BCL-10 and MALT1 in lymphocyte development and activation', Nat Rev Immunol, 4: 348-359.
Thome, M. 2008. 'Multifunctional roles for MALT1 in T-cell activation', Nat Rev Immunol, 8: 495-500.
Thome, M., J. E. Charton, C. Pelzer, and S. Hailfinger. 2010. 'Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1', Cold Spring Harb Perspect Biol, 2: a003004.
Turvey, S. E., A. Durandy, A. Fischer, S. Y. Fung, R. S. Geha, A. Gewies, T. Giese, et al. 2014. 'The CARD11-BCL10-MALT1 (CBM) signalosome complex: Stepping into the limelight of human primary immunodeficiency', J Allergy Clin Immunol, 134: 276-284.
Uehata, T., H. Iwasaki, A. Vandenbon, K. Matsushita, E. Hernandez-Cuellar, K. Kuniyoshi, T. Satoh, et al. 2013. 'Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation', Cell, 153: 1036-1049.
Uren, A. G., K. O'Rourke, L. A. Aravind, M. T. Pisabarro, S. Seshagiri, E. V. Koonin, and V. M. Dixit. 2000. 'Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma', Mol Cell, 6: 961-967.
Vu, D., D. B. Huang, A. Vemu, and G. Ghosh. 2013. 'A structural basis for selective dimerization by NF-kappaB RelB', J Mol Biol, 425: 1934-1945.
Wang, D., Y. You, S. M. Case, L. M. McAllister-Lucas, L. Wang, P. S. DiStefano, G. Nunez, J. Bertin, and X. Lin. 2002. 'A requirement for CARMA1 in TCR-induced NF-kappa B activation', Nat Immunol, 3: 830-835.
Wegener, E., and D. Krappmann. 2007. 'CARD-Bcl10-Malt1 signalosomes: missing link to NF-kappaB', Sci STKE, 2007: pe21.
Wertz, I. E., K. M. O'Rourke, H. Zhou, M. Eby, L. Aravind, S. Seshagiri, P. Wu, et al. 2004. 'De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling', Nature, 430: 694-699.
Wu, B., A. Peisley, D. Tetrault, Z. Li, E. H. Egelman, K. E. Magor, T. Walz, P. A. Penczek, and S. Hur. 2014. 'Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I', Mol Cell, 55: 511-523.
Yang, C., L. David, Q. Qiao, E. Damko, and H. Wu. 2014. 'The CBM signalosome: potential therapeutic target for aggressive lymphoma?', Cytokine Growth Factor Rev, 25: 175-183.
Yu, J. W., S. Hoffman, A. M. Beal, A. Dykon, M. A. Ringenberg, A. C. Hughes, L. Dare, et al. 2015. 'MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses', PLoS One, 10: e0127083.
Zhou, H., M. Q. Du, and V. M. Dixit. 2005. 'Constitutive NF-kappaB activation by the t(11;18)(q21;q21) product in MALT lymphoma is linked to deregulated ubiquitin ligase activity', Cancer Cell, 7: 425-431.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49560-
dc.description.abstract目前已經發現許多鷹架蛋白在由不同接受器刺激誘發的Nuclear Factor-κB (NF-κB)活化路經中扮演重要角色。在這些鷹架蛋白中,一種具有CARD (CAspase Recruitment Domain) 的鷹架蛋白家族於NF-κB的活化扮演重要角色。CARMA (CARD- and Membrane Associated guanylate kinase-like domain-containing proteins)蛋白在氮端具有CARD區域,後面接著一個Coiled-coil (CC) 區域、一個PDZ區域、一個SH3區域,以及一個Guanylate Kinase-like (GUK) 區域於碳端。CARMA蛋白透過CARD區域與兩個下游訊號分子結合形成複合體,一個為同樣具有CARD區域的蛋白質,BCL10 (B-cell lymphoma 10);另一個為旁凋亡蛋白酶MALT1 (Mucosa-Associated Lymphoid tissue lymphoma Translocation protein 1)。全長的MALT1是一個不活化、單體的形態。當CARMA–BCL10–MALT1複合體 (又稱為CBM 複合體) 形成時,誘發MALT1進行寡聚合作用,活化其蛋白水解酶活性,並招募下游IKK複合體導致NF-κB的活化。含有CARMA1的CBM複合體是一個雛形及最被了解的signalsome。CARD9為另一個CARD蛋白,其與CARMA家族成員的結構相似。其在氮端與CARMA蛋白一樣具有CARD區域及一個CC區域,但缺少碳端的PDZ-SH3-GUK區域。CARD9同樣會與BCL10及MALT1形成複合體,而使NF-κB活化。然而,在具有CARD9的CBM複合體中其MALT1的蛋白水解活性仍未被研究透徹。在本篇研究中,以CARMA1、CARD9及把CARMA1不同區域與其相似蛋白CARD9置換的嵌合體CARD9-CARMA1蛋白來比較其形成聚集、與BCL10交互作用和活化NF-κB的能力。由實驗結果發現,CARD9在細胞質中形成多個大的聚集,CARMA1則形成puncta-like結構於細胞質以及細胞膜。將CARMA1的CARD或CARD-CC區域置換成CARD9,分別構築出CARD9-CARMA1嵌合體1及CARD9-CARMA1嵌合體2,影響表現量及型態。與BCL10共同表現,CARMA1、CARD9以及兩個嵌合體蛋白皆會與BCL10絲狀構造co-localization。利用NF-κB reporter assay分析,CARMA1具有明顯活化NF-κB的能力。CARD9以及兩個嵌合體蛋白發現具有中等的NF-κB活化能力。已經建立CARMA1-knock-down Jurkat T細胞並確認受MALT1所調控的BCL10及RelB切割現象會消失。在不遠的將來,CARMA1、CARD9以及兩個嵌合體蛋白將會用來研究活化MALT1蛋白酶活性的能力。zh_TW
dc.description.abstractMany scaffold proteins have been shown to play a crucial role in activation of the nuclear factor-κB (NF-κB) following stimulation of different receptors. Among these scaffold proteins, a family of CARD (CAspase Recruitment Domain)-containing scaffold proteins plays critical roles in the activation of NF-κB. CARMA proteins (CARD- and Membrane Associated guanylate kinase-like domain-containing proteins) contain an N-terminal CARD domain, followed with a coiled-coil domain (CC), a PDZ domain, an SH3 domain, and a Guanylate Kinase-like (GUK) domain in the C-terminus. CARMA proteins, through their CARD domain, form a complex with two downstream signaling molecules, BCL10 (B-cell lymphoma 10), another CARD-containing protein, and paracaspase MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1). Full length MALT1 is in an inactive, monomeric form. The formation of CARMA–BCL10–MALT1 complex (known as CBM complex) triggers oligomerization of MALT1, activates its proteolytic activity, and recruits the downstream IKK complex leading to activation of NF-κB. CARMA1-containing CBM complex is the prototype and the best characterized signalsome. CARD9, another CARD protein, is structurally similar to CARMA family members. It has an N-terminal CARD and a CC domain like CARMA proteins but lacks the C-terminal PDZ-SH3-GUK domain. CARD9 is also known to form a complex with BCL10 and MALT1 leading to activation of NF-κB. However, the proteolytic activity of MALT1 in the CARD9-containing CBM complex has not been fully characterized. In this study, CARMA1, CARD9 and chimeric CARD9-CARMA1 proteins containing distinct domain of CARMA1 replaced with counterpart from CARD9 were compared for their abilities to form aggregates, interact with BCL10 and activate NF-κB. While CARD9 formed multiple large aggregates in the cytoplasm, CARMA1 formed puncta-like structure both in the cytoplasm and along the cytoplasmic membrane. Replacement of CARD or CARD-CC in the CARMA1 with counterpart from CARD9, generating CARD9-CARMA1 chimera 1 and CARD9-CARMA1 chimera 2 respectively, affected the level and pattern of expression. With BCL10 coexpression, CARMA1, CARD9 and both chimeric proteins colocalized with BCL10 filaments. Using NF-κB reporter assay, CARMA1 was shown to induce an apparent NF-κB activation ability. CARD9 and both chimeric proteins exhibited moderate NF-κB activation ability. CARMA1-knock-down Jurkat cells were established and confirmed to lose their MALT1-mediated cleavage of BCL10 and RelB. In the near future, CARMA1, CARD9 and both chimeric proteins will be introduced and examined for their abilities to activate the protease activity of MALT1.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:34:48Z (GMT). No. of bitstreams: 1
ntu-105-R03445110-1.pdf: 3552393 bytes, checksum: 5140032ed91546994aae462de96244c4 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 i
ABSTRACT iii
目錄 v
圖表目錄 vii
Chapter 1 序論 1
1.1 鷹架蛋白 (Scaffold proteins) 對於活化NF-κB (Nuclear Factor-kappa B) 訊息路徑的重要性 1
1.2 CARD-containing proteins在NF-κB傳訊路徑中扮演重要角色 2
1.2.1 CARMA1之基本介紹 2
1.2.2 CARMA2之基本介紹 5
1.2.3 CARMA3之基本介紹 6
1.2.4 CARD9之基本介紹 6
1.3 CBM複合體中的MALT1在典型的NF-κB訊息路徑中扮演的功能與角色 8
1.3.1 MALT1淋巴瘤 ( lymphoma) 8
1.3.2 MALT1之基本介紹 9
1.3.2.1 MALT1具鷹架蛋白功能 10
13.2.2 MALT1具蛋白酶活性功能 10
Chapter 2 研究動機 16
Chapter 3 材料與方法 17
3.1抗體來源 17
3.2實驗使用之質體及質體構築(附圖) 17
3.3 製備勝任細胞 (Preparation of Competent cells) 18
3.4 細菌轉型 (Bacteria Transformation) 19
3.5 小量質體製備 (Mini Plasmid Preparation) 19
3.6 大量質體製備 (Maxi Plasmid Preparation) 19
3.7 聚合酶連鎖反應 (Polymerase Chain Reaction) 20
3.7.1 定點突變 (Site-Directed Mutagenesis) 20
3.8 細胞培養 (Cell Culture) 21
3.8.1 培養方法 21
3.8.2 HEK (Human Embryonic Kidney) 293T細胞 22
3.8.3 Jurkat T細胞 22
3.8.4 THP-1細胞 22
3.9暫時性基因轉染-磷酸鈣轉染 (Transient Gene Transfection-Calcium Phosphate Transfection) 23
3.10 製備慢性病毒載體顆粒 (Lentiviral Vector Particles Packaging) 23
3.11 建立以慢性病毒載體系統主導之核醣核酸干擾作用-慢性病毒感染(Establishment of Lentiviral Vector System-Mediated RNA interference-Lentiviral infection) 23
3.11.1 建立穩定表現si-CARMA1之突變細胞株 (Establishment of Stable Expression of si-CARMA1 cell line) 24
3.12製作螢光玻片 (Preparation of fluorescent slide) 24
3.13 細胞蛋白質萃取 (Protein Lysate Extraction) 25
3.14 蛋白質定量分析 (Protein Quantification Analysis) 25
3.15 十二基烷硫酸鈉-聚丙烯醯胺膠體電泳 (SDS-Polyacrylamide Gel Electrophoresis) 25
3.16 西方墨點法 (Western Blotting Analysis) 26
3.17 螢光素酶試驗 (Luciferase Assay) 26
3.18 免液沉澱法 (Immunoprecipitation, IP) 27
Chapter 4 實驗結果 28
4.1 構築不同的CARD-containing proteins,並在HEK 293T細胞中大量表現,觀察是否會進行寡聚合作用,並且形成不同的聚集形態。 28
4.2 共同表現BCL10,比較不同的CARD-containing proteins在細胞中是否會與BCL10有交互作用。 28
4.3 比較不同的CARD-containing proteins對NF-κB活化的能力 30
4.4 在不同的細胞中,觀察不同的刺激對NF-κB路徑活化的能力及MALT1水解受質的切割情形 31
4.5 透過不同刺激活化的NF-κB路徑中,欲探討是否有不同的CBM 複合體參與 32
4.6 欲確認MALT1及CARMA1在活化NF-κB路徑中是否必要,以及探討CARMA1對MALT1的蛋白水解酶活性是否重要 32
Chapter 5 討論 34
5.1 不同的CARD-containing proteins在細胞中形成不同的構型可能與NF-κB的活化能力有關 34
5.2 CARD9跟CARMA1分別與BCL10 co-localization的構造 36
5.3於骨髓系THP-1細胞中,給予不同刺激並觀察MALT1蛋白水解酶活性 37
5.4 給予不同刺激於THP-1骨髓系細胞,在活化NF-κB路徑情況下,所形成的CBM複合體 38
Chapter 6 結果圖表 40
Chapter 7 附錄圖表 49
參考文獻 72
dc.language.isozh-TW
dc.subjectCARD9zh_TW
dc.subjectCBM複合體zh_TW
dc.subjectCARMA1zh_TW
dc.subjectMALT1zh_TW
dc.subjectCARMA1en
dc.subjectCARD9en
dc.subjectCBM complexen
dc.subjectMALT1en
dc.titleCARD9或CARMA1所組成的CBM複合體中MALT1蛋白水解酶功能差異的探討zh_TW
dc.titleDeciphering the proteolytic activity of MALT1 in CARD9-containing and CARMA1-containing CBM complexen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李明學,張永祺
dc.subject.keywordCBM複合體,CARD9,CARMA1,MALT1,zh_TW
dc.subject.keywordCBM complex,CARD9,CARMA1,MALT1,en
dc.relation.page79
dc.identifier.doi10.6342/NTU201602875
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
Appears in Collections:微生物學科所

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
3.47 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved