Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49556
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅(Chih-I Wu)
dc.contributor.authorWei-Shin Chengen
dc.contributor.author程薇心zh_TW
dc.date.accessioned2021-06-15T11:34:34Z-
dc.date.available2021-08-25
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citation[1] “Polythiophenes Comprising Conjugated Pendants for Polymer Solar Cells: A Review” Materials 2014, 7(4), 2411-2439
[2] http://www.nrel.gov/ncpv/
[3] “Research Progress of Oxides Thermoelectric Materials.” ZHAN Bin, LAN Jin-Le, LIU Yao-Chun, DING Jing-Xuan, LIN Yuan-Hua, NAN Ce-Wen. Journal of Inorganic Materials, 2014, 29(3): 237-244
[4] “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells.” Akihiro Kojima , Kenjiro Teshima, Yasuo Shirai and Tsutomu Miyasaka. Journal of the American Chemical Society, 131 (17).
[5] “Cesium-containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency.” Saliba M, Matsui T, Seo J-Y, Domanski K, Correa-Baena J-P, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A, Grätzel M. Energy and Environmental Science 16 March 2016
[6] “Perovskite-based low-cost and high-efficiency hybrid halide solar cells.” Jiandong Fan, Baohua Jia and Min Gu Photonics. Photonics Research Vol. 2, Issue 5, pp. 111-120 (2014).
[7] “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%.” Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl. Scientific Reports, 2012; 2: 591.
[8] “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability.” A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science. 2014, 345, 295.
[9] “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process.” Qi Chen, Huanping Zhou, Ziruo Hong, Song Luo, Hsin-Sheng Duan, Hsin-Hua Wang, Yongsheng Liu, Gang Li and Yang Yang. Journal of the American Chemical Society, 2014, 136 (2), pp 622–625.
[10] “Efficient planar heterojunction perovskite solar cells by vapour deposition.” Mingzhen Liu, Michael B. Johnston and Henry J. Snaith. Nature 501, 395–398 (19 September 2013).
[11] “Lead-free solid-state organic–inorganic halide perovskite solar cells.” Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang and Mercouri G. Kanatzidis. Nature Photonics 8, 489–494 (2014).
[12] “Lead-free organic–inorganic tin halide perovskites for photovoltaic applications.” Nakita K. Noel, Samuel D. Stranks, Antonio Abate, Christian Wehrenfennig, Simone Guarnera, Amir-Abbas Haghighirad, Aditya Sadhanala, Giles E. Eperon, Sandeep K. Pathak, Michael B. Johnston, Annamaria Petrozza, Laura M. Herza and Henry J. Snaith. Energy Environ. Sci. 2014, 7,982.
[13] https://commons.wikimedia.org/wiki/File:Graphen.jpg
[14] 光連雙月刊2014.5. No.111
[15] “Organic solar cell Architectures.” Dipl. Ing. Klaus Petritsch, PhD Thesis.
[16] “General Working Principles of CH3NH3PbX3 Perovskite Solar Cells.” Victoria Gonzalez-Pedro, Emilio J. Juarez-Perez, Waode-Sukmawati Arsyad, Eva M. Barea, Francisco Fabregat-Santiago, Ivan Mora-Sero and Juan Bisquert. Nano Letters, 2014, 14, 888−893.
[17] “ZnO微納結構製備及光學性能研究” 梁志強, 哈爾濱工業大學, 2013.
[18] “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells” V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens J. Appl. Phys. 94, 6849 (2003).
[19] “Temperature dependence for the photovoltaic device parameters of polymer-fullerene solar cells under operating conditions, ” E. A. Katz, D. Faiman and S. M. Tuladhar.
Journal of applied physics, vol. 90, p.5343, 2001.
[20] https://en.wikipedia.org/wiki/Air_mass
[21] 工業材料雜誌258期,光電顯示特刊,249.(2008)
[22] “Comparison of transparent conductive indium tin oxide, titanium-doped indium oxide, and fluorine-doped tin oxide films for dye-sensitized solar cell application” Dong-Joo Kwak, Byung-Ho Moon, Don-Kyu Lee, Cha-Soo Park and Youl-Moon Sung. Journal of Electrical Engineering & Technology Vol. 6, No. 5, pp. 684~687, 2011.
[23] Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), Sigma-Aldrich, 655201.
[24] N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-methoxyphenyl)-9,9′-spirobi[9H-fluorene]-2,2′,7,7′-tetramine. Spiro-MeOTAD, Sigma-Aldrich, 483095.
[25] [6,6]-Phenyl C61 butyric acid methyl ester. PCBM, Sigma-Aldrich, 684457.
[26] “A two-step route to planar perovskite cells exhibiting reduced hysteresis.” Alexander H. Ip, Li Na Quan, Michael M. Adachi, Jeffrey J. McDowell, Jixian Xu, Dong Ha Kim, and Edward H. Sargent. Applied Physics Letters 106, 143902 2015.
[27] “Uniform, Stable, and Efficient Planar-Heterojunction Perovskite Solar Cells by Facile Low-Pressure Chemical Vapor Deposition under Fully Open-Air Conditions.” Paifeng Luo, Zhaofan Liu, Wei Xia, Chenchen Yuan, Jigui Cheng, and Yingwei Lu. ACS Appl. Mater. Interfaces, 2015, 7 (4), pp 2708–2714.
[28] “A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells.” Manda Xiao, Dr. Fuzhi Huang, Wenchao Huang, Yasmina Dkhissi, Dr. Ye Zhu, Prof. Dr. Joanne Etheridge, Dr. Angus Gray-Weale, Prof. Dr. Udo Bach, Prof. Dr. Yi-Bing Cheng, Prof. Dr. Leone Spiccia.
Angewandte Chemie, Vol.126, Issue 37.
[29] “Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition.” Yongzhen Wu, Ashraful Islam, Xudong Yang, Chuanjiang Qin, Jian Liu, Kun Zhang, Wenqin Peng and Liyuan Han. Energy Environ. Sci., 2014, 7, 2934.
[30] “Anomalous Hysteresis in Perovskite Solar Cells” J. Phys. Chem. Lett.” Henry J. Snaith, Antonio Abate, James M. Ball, Giles E. Eperon, Tomas Leijtens, Nakita K. Noel, Samuel D. Stranks, Jacob Tse-Wei Wang, Konrad Wojciechowski and Wei Zhang. J. Phys. Chem. Lett. 2014, 5 (9), pp 1511–1515.
[31] “Compact Layer Free Perovskite Solar Cells with 13.5% E ffi ciency” Dianyi Liu, Jinli Yang and Timothy L. Kelly J. Am. Chem. Soc., 2014, 136 (49), pp 17116–17122
[32] “Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells” Giles E. Eperon, Victor M. Burlakov, Pablo Docampo, Alain Goriely, Henry J. Snaith. Advanced Functional Materials 24(1):151-157. January 2014
[33] “Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications” Kung-Shih Chen, José-Francisco Salinas, Hin-Lap Yip, Lijun Huo, Jianhui Houc and Alex K.-Y. Jen. Energy Environ. Sci., 2012,5, 9551-9557.
[34] “Interface engineering of highly efficient perovskite solar cells” Huanping Zhou, Qi Chen, Gang Li, Song Luo, Tze-bing Song, Hsin-Sheng Duan, Ziruo Hong, Jingbi You, Yongsheng Liu, Yang Yang. Science 01 Aug 2014: Vol. 345, Issue 6196, pp. 542-546.
[35] 'Surface-energy engineering of graphene.' Shin, Young Jun, et al. Langmuir 26.6 (2010): 3798-3802.
[36] 'A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate.' Lin, Wei-Hsiang, et al. ACS nano8.2 (2014): 1784-1791.
[37] “Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties” D. C. Wei, Y. Q. Liu, Y. Wang, H. L. Zhang, L. P. Huang, and G. Yu. Nano Letters, vol. 9, pp. 1752-1758, May 2009.
[38] “New hexa-peri-hexabenzocoronene (HBC) for the applications of the graphene exfoliation and modification, and surface self-assembly.” Po-Han Wang, Wong, Ken-Tsung.
[39] “Open-Air Vapor-Assisted Solution Process Perovskite Solar Cell and Graphene Anode Conventional Organic Solar Cell” Xue-Qian You et al, Chih-I Wu.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49556-
dc.description.abstract本篇論文第一部份探討以快速結晶(Drop-Casting)的溶液製程製作正規結構鈣鈦礦太陽能電池之優化過程。我們將元件從電子傳輸層緻密TiO2、主動層Perovskite、電洞傳輸層Spiro以及上電極,依序優化。在優化電子傳輸層的部分,我們探討元件在不同厚度及不同層數之TiO2下的表現,而在優化主動層Perovskite層的部分,分別測試了Perovskite的厚度、後退火溫度、後退火時間這三個條件,研究過程中我們觀察不同變因對於Perovskite成膜的影響,也以SEM及XRD來觀測Perovskite的結晶顆粒,分析Perovskite結晶的型態及完整度。最後在Spiro層以及上電極金的厚度優化完成後,我們製作出填充係數72、轉換效率15.7%的正規結構元件。
在第二部分的研究中,我們以介面改質材料HBC-6ImBr(HBC)來對石墨烯下電極表面進行親疏水性的改變,製作出以石墨烯為陽極的倒置鈣鈦礦太陽能電池。本章節中我們探討不同層數的石墨烯作為下電極的效果,以及不同層數HBC-6ImBr對於元件的影響,我們發現隨著石墨烯堆疊層數增加,石墨烯破洞減少,有利於作為下電極材料。而隨著HBC層數的增加,元件的填充係數逐漸上升,但因為HBC本身的電阻也會阻礙元件的光電流,我們測試出最優化的元件是以三層HBC作為介面改質來連接之後的材料,製作出轉換效率7.1%,填充係數52.4的石墨烯下電極元件。最後我們以奈米銀線取代倒置鈣鈦礦太陽能電池的上電極銀,以適當的後退火溫度,製作出半透明元件。
zh_TW
dc.description.abstractIn the first part of this thesis, the optimized performance of Perovskite solar cells in conventional structure using drop-casting solution process has been achieved. Devices performance were sequentially improved by several testing, including thickness and the layer number of titanium dioxide (TiO2) which is used as electron transporting layer (ETL), annealing time, annealing temperature and thickness of Perovskite which is used as light absorption layer, thickness of hole transport layer (HTL) of N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-methoxyphenyl)-9,9′-spirobi [9H-fluorene] -2,2′,7,7′-tetramine (Spiro-MeOTAD) and anode(Au) .The mechanisms behind for each part have been discussed as well. Via the measurement of Scanning electron microscopy(SEM) and X-ray diffraction(XRD),it proves that the drop-casting process is beneficial for crystallization of Perovskite. Finally the power conversion efficiency of the Perovskite solar cells in this study has achieved over 15.7%, with a filling factor (F.F) of 72%.
In the second part, we successfully fabricate inverted perovskite solar cells using graphene as bottom anode. In order to convert graphene’s hydrophobic nature into hydrophilic, we insert a buffer material called HBC-6ImBr (Hexa-peri- hexabenzocoronene-6ImBr) between graphene and HTL. Besides, we find that cracks of graphene can be covered by stacking multilayer of graphene and effectively improve the device performance such as shunt resistance. Our best cell with tri-layer HBC-6ImBr and tri-layer graphene has reached 7.1% of power conversion efficiency and a fill factor of around 52%. At last, we try to replace Ag with sliver nano-wire (Ag-NW) to fabricate transparent devices in inverted structure with appropriate annealing temperature.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:34:34Z (GMT). No. of bitstreams: 1
ntu-105-R03941015-1.pdf: 3168142 bytes, checksum: b48b91c009c450257a4966c29a0ae0bc (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目錄
誌謝 i
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論與介紹 - 1
1.1 太陽能電池簡介 - 1
1.2 鈣鈦礦太陽能電池 - 4
1.3 石墨烯簡介 - 7
1.4 正規與倒置型鈣鈦礦太陽能電池 - 8
1.5 鈣鈦礦太陽能電池工作原理 - 9
1.6 太陽能電池等校電路與參數介紹 - 11
第二章 實驗儀器及材料 - 15
2.1 實驗儀器介紹 - 15
2.1.1 氮氣手套箱 - 15
2.1.2 太陽能量測模擬器 - 16
2.1.3 薄膜厚度量測儀 Alpha-step - 17
2.1.4 X-光粉末繞射儀(XRD) - 17
2.2 實驗材料介紹 - 18
2.2.1 銦錫氧化物基板(ITO)及SnO2:F基板(FTO) - 18
2.2.2 聚二氧乙基噻吩:聚苯乙烯磺酸(PEDOT:PSS) - 19
2.2.3 Spiro-OMeTAD (Spiro) - 20
2.2.4 Methylammonium lead tri-iodide ( MAPbI3) - 20
2.2.5 PC61BM(電子傳輸材料) - 21
2.2.6 二氧化鈦(TiO2) - 21
2.2.7 上電極材料 - 22
2.3 溶液製程製備鈣鈦礦太陽能電池之實驗步驟 - 22
2.3.1 ITO與FTO基板的清洗與準備 - 23
2.3.2 正規結構製程 - 24
2.3.3 倒置結構製程 - 26
2.3.4 量測 - 27
第三章 正規結構鈣鈦礦太陽能電池優化 - 28
3.1 電子傳輸層TiO2之優化 - 28
3.2 Perovskite層之優化 - 33 -
3.3 電洞傳輸層Spiro-OMeTAD層之優化 - 45
3.4 上電極條件測試 - 47
3.5 結論 - 49
第四章 倒置結構鈣鈦礦太陽能電池結合透明電極 - 50
4.1 以石墨烯/HBC取代倒置結構鈣鈦礦太陽能電池下電極 - 50
4.1.1 轉印石墨烯 - 50
4.1.2 倒置結構鈣鈦礦太陽能電池、石墨烯與HBC - 51
4.1.3 石墨烯/HBC下電極元件測試 - 54
4.2 以Ag-NW取代倒置結構鈣鈦礦太陽能電池上電極 - 59
4.2.1 奈米銀線Ag-NW上電極元件 - 59
4.3 結論 - 62
第五章 未來展望 - 63
參考資料 - 64
dc.language.isozh-TW
dc.title以溶液製程製作高效率鈣鈦礦太陽能電池及結合透明電極之研究zh_TW
dc.titleEfficient Solution Process Perovskite Solar Cell and Transparent electrodeen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳肇欣,陳奕君,吳育任,陳美杏
dc.subject.keyword鈣鈦礦太陽能電池,濕式製程,新型六苯並?分子,石墨烯,透明電極,zh_TW
dc.subject.keywordPerovskite solar cells,Solution process,HBC-6ImBr (Hexa-peri-hexabenzocoronene-6ImBr),Graphene,Transparent electrode,en
dc.relation.page67
dc.identifier.doi10.6342/NTU201602790
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved