Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49551
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高振宏
dc.contributor.authorJen-Jui Yuen
dc.contributor.author余人睿zh_TW
dc.date.accessioned2021-06-15T11:34:19Z-
dc.date.available2018-11-02
dc.date.copyright2016-11-02
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citation[1] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, R. Mahnkopf, 'More-than-Moore' White Paper, ITRS, 2010.
[2] K. Banerjee, S.J. Souri, P. Kapur, K.C. Saraswat, Proceedings of the IEEE 89 (2001) 602-633.
[3] R.M. Lea, I.P. Jalowiecki, D.K. Boughton, J.S. Yamaguchi, A.A. Pepe, V.H. Ozguz, J.C. Carson, IEEE Transactions on Advanced Packaging 22 (1999) 424-432.
[4] W.R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A.M. Sule, M. Steer, P.D. Franzon, IEEE Design & Test of Computers 22 (2005) 498-510.
[5] J.H. Lau, Proceedings of IEEE Electronic Components and Technology Conference (2010) 1031-1042.
[6] J.H. Lau, Electronic Components and Technology Conference (ECTC), 2010 IEEE 60th (2010) 1031-1042.
[7] T.S. Jung, Samsung Memory Technology and Solutions Roadmap, Samsung, 2008.
[8] U. Kang, H.J. Chung, S. Heo, D.H. Park, H. Lee, J.H. Kim, S.H. Ahn, S.H. Cha, J. Ahn, D. Kwon, J.W. Lee, H.S. Joo, W.S. Kim, D.H. Jang, N.S. Kim, J.H. Choi, T.G. Chung, J.H. Yoo, J.S. Choi, C. Kim, Y.H. Jun, IEEE Journal of Solid-State Circuits 45 (2010) 111-119.
[9] B. Banijamali, S. Ramalingam, H. Liu, K. Myongseob, Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd (2012) 309-314.
[10] http://press.xilinx.com/2013-10-20-Xilinx-and-TSMC-Reach-Volume-Production-on-all-28nm-CoWoS-based-All-Programmable-3D-IC-Families.
[11] The International Technology Roadmap for Semiconductors, ITRS, 2011.
[12] The International Technology Roadmap for Semiconductors, ITRS, 2013.
[13] Y.J. Chen, T.L. Yang, J.J. Yu, C.L. Kao, C.R. Kao, Materials Letters 110 (2013) 13-15.
[14] J.F. Li, P.A. Agyakwa, C.M. Johnson, Acta Materialia 59 (2011) 1198-1211.
[15] H.Y. Chuang, T.L. Yang, M.S. Kuo, Y.J. Chen, J.J. Yu, C.C. Li, C.R. Kao, IEEE Transactions on Device and Materials Reliability 12 (2012) 233-240.
[16] H.Y. Chuang, J.J. Yu, M.S. Kuo, H.M. Tong, C.R. Kao, Scripta Materialia 66 (2012) 171-174.
[17] T.L. Yang, J.J. Yu, W.L. Shih, C.H. Hsueh, C.R. Kao, Journal of Alloys and Compounds 605 (2014) 193-198.
[18] C.C. Li, C.K. Chung, W.L. Shih, C.R. Kao, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 45A (2014) 2343-2346.
[19] R. Beica, C. Sharbono, T. Ritzdorf, Electronic Components and Technology Conference, 2008. ECTC 2008. 58th (2008) 577-583.
[20] J. Dong Min, R. Chunghyun, L. Kwang Yong, C. Byeong Hoon, K. Joungho, O. Tae Sung, L. Won Jong, Y. Jin, Electronic Components and Technology Conference, 2007. ECTC '07. Proceedings. 57th (2007) 847-852.
[21] X. Zhang, T.C. Chai, J.H. Lau, C.S. Selvanayagam, K. Biswas, L. Shiguo, D. Pinjala, G.Y. Tang, Y.Y. Ong, S.R. Vempati, E. Wai, H.Y. Li, E.B. Liao, N. Ranganathan, V. Kripesh, S. Jiangyan, J. Doricko, C.J. Vath, Electronic Components and Technology Conference, 2009. ECTC 2009. 59th (2009) 305-312.
[22] E. Beyne, P. De Moor, W. Ruythooren, R. Labie, A. Jourdain, H. Tilmans, D.S. Tezcan, P. Soussan, B. Swinnen, R. Cartuyvels, Electron Devices Meeting, 2008. IEDM 2008. IEEE International (2008) 1-4.
[23] P. Ramm, M.J. Wolf, A. Klumpp, R. Wieland, B. Wunderle, B. Michel, H. Reichl, Electronic Components and Technology Conference, 2008. ECTC 2008. 58th (2008) 841-846.
[24] H. Kikuchi, Y. Yamada, A.M. Ali, J. Liang, T. Fukushima, T. Tanaka, M. Koyanagi, Japanese Journal of Applied Physics 47 (2008) 2801.
[25] F. Liu, R.R. Yu, A.M. Young, J.P. Doyle, X. Wang, L. Shi, K.N. Chen, X. Li, D.A. Dipaola, D. Brown, C.T. Ryan, J.A. Hagan, K.H. Wong, M. Lu, X. Gu, N.R. Klymko, E.D. Perfecto, A.G. Merryman, K.A. Kelly, S. Purushothaman, S.J. Koester, R. Wisnieff, W. Haensch, Electron Devices Meeting, 2008. IEDM 2008. IEEE International (2008) 1-4.
[26] R. Agarwal, W. Zhang, P. Limaye, R. Labie, B. Dimcic, A. Phommahaxay, P. Soussan, Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th (2010) 858-863.
[27] H.Y. Chen, D.Y. Shih, C.C. Wei, C.H. Tung, Y.L. Hsiao, D.C.H. Yu, Y.C. Liang, C. Chen, Electronic Components and Technology Conference (ECTC), 2013 IEEE 63rd (2013) 49-57.
[28] S.W. Yoon, J.H. Ku, N. Suthiwongsunthorn, P.C. Marimuthu, F. Carson, 3D System Integration, 2009. 3DIC 2009. IEEE International Conference on (2009) 1-5.
[29] C.K. Lee, T.C. Chang, Y.J. Huang, H.C. Fu, J.H. Huang, Z.C. Hsiao, J.H. Lau, C.T. Ko, R.S. Cheng, P.C. Chang, K.S. Kao, Y.L. Lu, R. Lo, M.J. Kao, Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st (2011) 1468-1474.
[30] A. Yu, J.H. Lau, S.W. Ho, A. Kumar, W.Y. Hnin, D.-Q. Yu, M.C. Jong, V. Kripesh, D. Pinjala, D.-L. Kwong, Electronic Components and Technology Conference, 2009. ECTC 2009. 59th (2009) 6-10.
[31] J. Hwang, J. Kim, W. Kwon, U. Kang, T. Cho, S. Kang, Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th (2010) 1399-1403.
[32] K. Sakuma, K. Sueoka, S. Kohara, K. Matsumoto, H. Noma, T. Aoki, Y. Oyama, H. Nishiwaki, P.S. Andry, C.K. Tsang, J.U. Knickerbocker, Y. Orii, Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th (2010) 864-871.
[33] C.J. Zhan, J.Y. Juang, Y.M. Lin, Y.W. Huang, K.S. Kao, T.F. Yang, S.T. Lu, J.H. Lau, T.H. Chen, R. Lo, M.J. Kao, Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st (2011) 14-21.
[34] W.H. Chen, C.F. Yu, H.C. Cheng, Y.M. Tsai, S.T. Lu, Microelectronics Reliability 53 (2013) 30-40.
[35] S.T. Lu, J.Y. Juang, H.C. Cheng, Y.M. Tsai, T.H. Chen, W.H. Chen, Device and Materials Reliability, IEEE Transactions on 12 (2012) 296-305.
[36] Y.M. Lin, C.J. Zhan, J.Y. Juang, J.H. Lau, T.H. Chen, R. Lo, M. Kao, T. Tian, K.N. Tu, Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st (2011) 351-357.
[37] Y.J. Chen, C.K. Chung, C.R. Yang, C.R. Kao, Microelectronics Reliability 53 (2013) 47-52.
[38] S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, K.J. Puttlitz, Jom-Journal of the Minerals Metals & Materials Society 55 (2003) 61-65.
[39] F. Ochoa, J.J. Williams, N. Chawla, Journal of Electronic Materials 32 (2003) 1414-1420.
[40] K. Zeng, K.N. Tu, Materials Science & Engineering R-Reports 38 (2002) 55-105.
[41] S.J. Basinski, Z.S. Basinski, Dislocations in Solids 4 (1979) 261-362.
[42] M.F. Doerner, D.S. Gardner, W.D. Nix, Journal of Materials Research 1 (1986) 845-851.
[43] M.G. Allen, M. Mehregany, R.T. Howe, S.D. Senturia, Applied Physics Letters 51 (1987) 241-243.
[44] T.P. Weihs, S. Hong, J.C. Bravman, W.D. Nix, Journal of Materials Research 3 (1988) 931-942.
[45] M.A. Haque, M.T.A. Saif, Experimental Mechanics 42 (2002) 123-128.
[46] S.S. Brenner, Journal of Applied Physics 28 (1957) 1023-1026.
[47] I. Chasiotis, W. Knauss, Experimental Mechanics 42 (2002) 51-57.
[48] H.D. Espinosa, B.C. Prorok, M. Fischer, Journal of the Mechanics and Physics of Solids 51 (2003) 47-67.
[49] W.C. Oliver, G.M. Pharr, Journal of Materials Research 7 (1992) 1564-1583.
[50] G.M. Pharr, W.C. Oliver, F.R. Brotzen, Journal of Materials Research 7 (1992) 613-617.
[51] I.N. Sneddon, International Journal of Engineering Science 3 (1965) 47-57.
[52] M.D. Uchic, D.M. Dimiduk, Materials Science and Engineering: A 400–401 (2005) 268-278.
[53] M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix, Science 305 (2004) 986-989.
[54] M. Pozuelo, Y.W. Chang, J.M. Yang, Materials Letters 108 (2013) 320-323.
[55] C.J. Lee, J.C. Huang, T.G. Nieh, Applied Physics Letters 91 (2007) 161913.
[56] D.R.P. Singh, N. Chawla, G. Tang, Y.L. Shen, Acta Materialia 58 (2010) 6628-6636.
[57] J. Schwiedrzik, R. Raghavan, A. Burki, V. LeNader, U. Wolfram, J. Michler, P. Zysset, Nat Mater 13 (2014) 740-747.
[58] L. Jiang, N. Chawla, Scripta Materialia 63 (2010) 480-483.
[59] L. Jiang, H. Jiang, N. Chawla, Journal of Electronic Materials 41 (2012) 2083-2088.
[60] C. Niederberger, W.M. Mook, X. Maeder, J. Michler, Materials Science and Engineering: A 527 (2010) 4306-4311.
[61] J. Ye, R.K. Mishra, A.K. Sachdev, A.M. Minor, Scripta Materialia 64 (2011) 292-295.
[62] G. Ghosh, Journal of Materials Research 19 (2004) 1439-1454.
[63] D.E.J. Armstrong, A.J. Wilkinson, S.G. Roberts, Philosophical Magazine Letters 91 (2011) 394-400.
[64] Y. Takahashi, H. Kondo, H. Niimi, T. Nokuo, T. Suzuki, Sensors and Actuators A: Physical 206 (2014) 81-87.
[65] K. Matoy, H. Schönherr, T. Detzel, T. Schöberl, R. Pippan, C. Motz, G. Dehm, Thin Solid Films 518 (2009) 247-256.
[66] D. Di Maio, S.G. Roberts, Journal of Materials Research 20 (2005) 299-302.
[67] M. Li, M. Yang, J. Kim, Materials Letters 66 (2012) 135-137.
[68] J.O. Suh, K.N. Tu, N. Tamura, Journal of Applied Physics 102 (2007) 063511.
[69] J.O. Suh, K.N. Tu, N. Tamura, Applied Physics Letters 91 (2007) 051907.
[70] H.F. Zou, H.J. Yang, Z.F. Zhang, Acta Materialia 56 (2008) 2649-2662.
[71] H.F. Zou, H.J. Yang, Z.F. Zhang, Journal of Applied Physics 106 (2009) 113512.
[72] H.W. Lin, C.L. Lu, C.M. Liu, C. Chen, D. Chen, J.C. Kuo, K.N. Tu, Acta Materialia 61 (2013) 4910-4919.
[73] T.L. Yang, T. Aoki, K. Matsumoto, K. Toriyama, A. Horibe, H. Mori, Y. Orii, J.Y. Wu, C.R. Kao, Acta Materialia 113 (2016) 90-97.
[74] K. Nogita, C.M. Gourlay, S.D. McDonald, Y.Q. Wu, J. Read, Q.F. Gu, Scripta Materialia 65 (2011) 922-925.
[75] H. Zhang, B.E. Schuster, Q. Wei, K.T. Ramesh, Scripta Materialia 54 (2006) 181-186.
[76] J. Yu, J. Liu, J. Zhang, J. Wu, Materials Letters 60 (2006) 206-209.
[77] J. Hütsch, E.T. Lilleodden, Scripta Materialia 77 (2014) 49-51.
[78] C.A. Volkert, A.M. Minor, MRS Bulletin 32 (2007) 389-399.
[79] H. Fei, A. Abraham, N. Chawla, H. Jiang, Journal of Applied Mechanics 79 (2012) 061011.
[80] A.K. Larsson, L. Stenberg, S. Lidin, Zeitschrift für Kristallographie 210 (1995) 832-837.
[81] R. Cabarat, L. Guillet, R. LE, J Inst Met 75 (1949) 391-402.
[82] B. Subrahmanyam, Transactions of the Japan Institute of Metals 13 (1972) 93-95.
[83] L. Ostrovskaya, V. Rodin, A. Kuznetsov, Sov. J. Non-Ferrous Met. 26 (1985) 90-91.
[84] R.J. Field, S.R. Low III, J.G.K. Lucey, TMS (1991 ) 165-174.
[85] R.R. Chromik, R.P. Vinci, S.L. Allen, M.R. Notis, Journal of Materials Research 18 (2003) 2251-2261.
[86] X. Deng, M. Koopman, N. Chawla, K.K. Chawla, Materials Science and Engineering: A 364 (2004) 240-243.
[87] G.Y. Jang, J.W. Lee, J.G. Duh, Journal of Electronic Materials 33 (2004) 1103-1110.
[88] H. Tsukamoto, Z. Dong, H. Huang, T. Nishimura, K. Nogita, Materials Science and Engineering: B 164 (2009) 44-50.
[89] S. Lotfian, J.M. Molina-Aldareguia, K.E. Yazzie, J. Llorca, N. Chawla, Journal of Electronic Materials 42 (2013) 1085-1091.
[90] D. Mu, H. Huang, K. Nogita, Materials Letters 86 (2012) 46-49.
[91] J.M. Song, B.R. Huang, C.Y. Liu, Y.S. Lai, Y.T. Chiu, T.W. Huang, Materials Science and Engineering: A 534 (2012) 53-59.
[92] P.F. Yang, Y.S. Lai, S.R. Jian, J. Chen, R.S. Chen, Materials Science and Engineering: A 485 (2008) 305-310.
[93] N.T.S. Lee, V.B.C. Tan, K.M. Lim, Applied Physics Letters 89 (2006) 141908.
[94] H.J. Albrecht, A. Juritza, K. Muller, W.H. Muller, J. Sterthaus, J. Villain, A. Vogliano, Electronics Packaging Technology, 2003 5th Conference (EPTC 2003) (2003) 726-731.
[95] Z. Chen, M. He, B. Balakrisnan, C.C. Chum, Materials Science and Engineering: A 423 (2006) 107-110.
[96] C. Motz, T. Schöberl, R. Pippan, Acta Materialia 53 (2005) 4269-4279.
[97] H. Bei, S. Shim, M.K. Miller, G.M. Pharr, E.P. George, Applied Physics Letters 91 (2007) 111915.
[98] Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, A.M. Minor, Nat Mater 7 (2008) 115-119.
[99] K.J. Puttlitz, K.A. Stalter, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies, Marcel Dekker, New York, 2004.
[100] J. Görlich, D. Baither, G. Schmitz, Acta Materialia 58 (2010) 3187-3197.
[101] M.L. Huang, T. Loeher, D. Manessis, L. Boettcher, A. Ostmann, H. Reichl, Journal of Electronic Materials 35 (2006) 181-188.
[102] R. Labie, W. Ruythooren, J. Van Humbeeck, Intermetallics 15 (2007) 396-403.
[103] M. Mita, M. Kajihara, N. Kurokawa, K. Sakamoto, Materials Science and Engineering: A 403 (2005) 269-275.
[104] W.M. Tang, A.Q. He, Q. Liu, D.G. Ivey, International Journal of Minerals, Metallurgy, and Materials 17 (2010) 459-463.
[105] S. Ishikawa, E. Hashino, T. Kono, K. Tatsumi, Materials transactions 46 (2005) 2351.
[106] S.J. Wang, H.J. Kao, C.Y. Liu, Journal of Electronic Materials 33 (2004) 1130-1136.
[107] A. Kumar, Z. Chen, Journal of Electronic Materials 40 (2010) 213-223.
[108] W.J. Tomlinson, H.G. Rhodes, Journal of Materials Science 22 (1987) 1769-1772.
[109] H.Y. Chen, C. Chen, P.W. Wu, J.M. Shieh, S.S. Cheng, K. Hensen, Journal of Electronic Materials 37 (2007) 224-230.
[110] J. Helneder, C. Hoyler, M. Schneegans, H. Torwesten, Microelectronic Engineering 82 (2005) 581-586.
[111] B. Kim, T. Ritzdorf Journal of The Electrochemical Society 150 (2003) C577.
[112] Y. Qin, G.D. Wilcox, C. Liu, Journal of The Electrochemical Society 156 (2009) D424.
[113] J.Y. Kim, J. Yu, J.H. Lee, T.Y. Lee, Journal of Electronic Materials 33 (2004) 1459-1464.
[114] V. Venkatasamy, S. Riemer, I. Tabakovic, Electrochimica Acta 56 (2011) 4834-4840.
[115] K. Zeng, K.N. Tu, Materials Science and Engineering: R: Reports 38 (2002) 55-105.
[116] J. Shen, Y.C. Liu, H.X. Gao, C. Wei, Y.Q. Yang, Journal of Electronic Materials 34 (2005) 1591-1597.
[117] D.W. Henderson, T. Gosselin, A. Sarkhel, S.K. Kang, W.-K. Choi, D.-Y. Shih, C. Goldsmith, K.J. Puttlitz, Journal of Materials Research 17 (2002) 2775-2778.
[118] S.K. Kang, D.Y. Shih, N.Y. Donald, W. Henderson, T. Gosselin, A. Sarkhel, N.Y. Charles Goldsmith, K. Puttlitz, W. Choi, JOM 55 (2003) 61-65.
[119] H.F. Hsu, S.W. Chen, Acta Materialia 52 (2004) 2541-2547.
[120] C. Schmetterer, H. Flandorfer, K.W. Richter, H. Ipser, Journal of Electronic Materials 36 (2007) 1415-1428.
[121] v.J.A. Beek, S.A. Stolk, v.F.J.J. Loo, Zeitschrift fuer Metallkunde 73 (1982) 439 - 444.
[122] W.J. Boettinger, M.D. Vaudin, M.E. Williams, L.A. Bendersky, W.R. Wagner, Journal of Electronic Materials 32 (2003) 511-515.
[123] W.M. Chen, S.K. Kang, C.R. Kao, Journal of Alloys and Compounds 520 (2012) 244-249.
[124] W.M. Chen, S.K. Kang, C.R. Kao, Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd (2012) 729-735.
[125] C.L. Chuang, L.C. Tsao, H.K. Lin, L.P. Feng, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 558 (2012) 478-484.
[126] K.S. Kim, S.H. Huh, K. Suganuma, Microelectronics Reliability 43 (2003) 259-267.
[127] L.W. Lin, J.M. Song, Y.S. Lai, Y.T. Chiu, N.C. Lee, J.Y. Uan, Microelectronics Reliability 49 (2009) 235-241.
[128] W. Liu, N.C. Lee, JOM 59 (2007) 26-31.
[129] W. Liu, P. Bachorik, N.C. Lee, Electronic Components and Technology Conference, 2008. ECTC 2008. 58th (2008) 452-458.
[130] W. Liu, N.C. Lee, A. Porras, M. Ding, A. Gallagher, A. Huang, S. Chen, J.C.B. Lee, Electronic Components and Technology Conference, 2009. ECTC 2009. 59th (2009) 994-1007.
[131] P. Liu, P. Yao, J. Liu, Journal of Alloys and Compounds 486 (2009) 474-479.
[132] Y.W. Wang, Y.W. Lin, C.T. Tu, C.R. Kao, Journal of Alloys and Compounds 478 (2009) 121-127.
[133] Y.K. Jee, Y.H. Ko, J. Yu, Journal of Materials Research 22 (2007) 1879-1887.
[134] S.C. Yang, C.E. Ho, C.W. Chang, C.R. Kao, Journal of Materials Research 21 (2011) 2436-2439.
[135] Y.K. Jee, J. Yu, Y.H. Ko, Journal of Materials Research 22 (2011) 2776-2784.
[136] C.H. Wang, H.H. Chen, W.H. Lai, Journal of Electronic Materials 40 (2011) 2436-2444.
[137] V. Vuorinen, H.Q. Dong, T. Laurila, Journal of Materials Science: Materials in Electronics 23 (2012) 68-74.
[138] F. Yin, J.C. Tedenac, F. Gascoin, Calphad 31 (2007) 370-379.
[139] J. Wang, C. Liu, C. Leinenbach, U.E. Klotz, P.J. Uggowitzer, J.F. Löffler, Calphad 35 (2011) 82-94.
[140] D. Mu, H. Yasuda, H. Huang, K. Nogita, Journal of Alloys and Compounds 536 (2012) 38-46.
[141] L. Xu, J.H.L. Pang, Thin Solid Films 504 (2006) 362-366.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49551-
dc.description.abstract由於現今正面臨到摩爾定律的終結,致使半導體業嘗試以其他方式克服電子元件製造上的物理極限以及逐漸提升的成本。其中3D IC是近年來最受到各大知名半導體廠青睞的方法。3D IC係以垂直方式堆疊晶片,其優勢在於增加接點密度的同時,可以大幅縮短訊號傳輸距離,進而提升系統效能,更重要的是這種架構能將異質晶片整合在一起。3D IC微接點與傳統覆晶技術主要的不同之處在於接點中銲料體積大幅縮小,僅有覆晶銲點的千分之一。因銲料體積大幅減少,組裝完畢後微接點內會充滿大量介金屬化合物。因此決定3D IC 微接點性質與可靠度的關鍵不再是銲料本身而轉變為占滿接點的介金屬,介金屬將會取代銲料成為微接點的結構材料。值此,工業界缺乏機械性質之數據据以模擬微接點可靠度之際,研究量化介金屬之性質乃當務之急。
在本論文的第一部分將藉由微米柱壓縮測試,針對單晶介金屬Cu6Sn5與Ni3Sn4進行機械性質之測量。測試結構將利用聚焦離子束切割製備,接著以Picoindenter在SEM下進行即時影像測試。實驗結果顯示雖然Cu6Sn5與Ni3Sn4之破壞模式皆為劈裂,但他們仍然能夠利用差排滑移產生應變突進。所以他們不像人們想像中的脆。在Cu6Sn5中,晶粒c軸垂直於施力方向時具有較佳的機械性質。而Ni3Sn4,在滑移系統(100)[010]中,能夠耐受4 %以上之應變。也就是說異相性在介金屬的機械強度提升上扮演重要角色,控制其晶粒方向能提升其塑形形變及機械性能。相較於Cu6Sn5,Ni3Sn4具有較佳之機械性質與韌性,也因此更適合用於3D IC微接點之結構材。
在製作一個全Ni3Sn4其高度小於10 μm的微接點時,由鎳與錫之間的反應所生成的微孔洞引起嚴重的可靠度問題。雖然銀的添加已被證明可以抑制這種微孔洞的形成,但是銀的最佳濃度尚未確立。本論文的第二部分將針對銀濃度在0 – 8 wt. %的範圍內的影響進行探討,以確定最佳的銀添加的量。發現銀的可消彌孔洞之最佳重量百分比為3.5 %左右,當它小於3.5 %時,微孔洞將無法完全消彌,而當其高於3.5 %時,銀將會形成的Ag3Sn連續層。此外,銀的添加對Ni3Sn4的生長動力學則沒有影響。另外在固液反應中,即使不添加的任何銀於錫之中,也可以獲得完全無孔洞之結構。
本論文的第三部分,旨在探討添加微量合金元素鈦對空間侷限下的Ni-Sn和Cu-Sn介面反應的影響。固態擴散偶Ni/Sn2.4AgX/Ni和Cu/Sn2.4AgX/Cu將利用熱壓接合製備,接著在150 - 200 °C下進行熱儲藏。鈦無論是在Ni-Sn或Cu-Sn系統皆以Ti2Sn3的形式析出。而添加鈦對Ni-Sn或Cu-Sn介金屬的生長動力學的其介面形貌沒有明顯的影響。
zh_TW
dc.description.abstractConsidering the substantial reduction of solder volume in 3D IC micro joint, it is expected that a large portion of the joints will be occupied by intermetallic compounds (IMC) after assembly. Unlike flip-chip joints, the mechanical properties and reliability of joints are no longer dominated solely by solders but rather by IMCs. Thus, it is anticipated that IMCs will be used as structural materials instead of solder in commercial scale in a few years. However, mechanical property data for industrial reliability modeling are lacking. To characterize mechanical properties of IMCs becomes an urgent issue.
In the first part of this thesis, micromechanical behaviors of single-crystalline Cu6Sn5 and Ni3Sn4 which are anticipated to be used as potential structural materials in micro joints in a few years are studied by micropillar compression. Micropillars were fabricated by focused ion beam machining and subsequently tested by Picoindenter. The failure mode of single-crystalline Cu6Sn5 and Ni3Sn4 are cleavage, but they both performed strain bursts as a result of dislocation gliding with certain slip system before failure. They are not as brittle as people thought and have superior mechanical properties. In Cu6Sn5, grains whose angle between c-axis and load direction is larger has better mechanical compatibility. Ni3Sn4 can withstand more than 4 % strain in preferred slip system, (100)[010]. The anisotropy becomes so important that the specific grain orientation shows the better plastic behavior and mechanical properties. Compared to Cu6Sn5, Ni3Sn has better mechanical performance as well as toughness and should be more auspicious to be adopted as structure materials of 3D IC microbumps.
To form a full Ni3Sn4 micro joints whose height of solder is smaller than 10 μm, microvoids formation induced by Ni/Sn reaction raises a serious reliability issue. Although it was recently shown that the addition of Ag can inhibit the formation of such microvoids, the optimal concentration of Ag has not yet been established. The second part of this thesis is systematically conducted to investigate the effects of Ag concentration in the range of 0-8 wt.%, with the objective of identifying the optimal Ag addition. It is found that the optimal weight percentage of Ag is between 2.4 and 3.5 wt.%.; when it is lower than 2.4 wt.%, not all of the microvoids are eliminated, while when it is substantially higher than 3.5 wt.%, Ag3Sn becomes the primary solidification phase and large Ag3Sn plates form. Furthermore, the addition of Ag is found to have no effect on the growth kinetics of Ni3Sn4. In solid-liquid reactions, void-free structures could be obtained after Sn was fully consumed, even in the absence of added Ag.
Minor alloying element addition in Sn-rich solder joint not only improve the mechanical properties of joints but also have several effect on interfacial reaction. Therefore, the information of minor element addition established on modification of properties of Sn is not suitable for reference anymore. It is a new challenge on the effects of minor addition on such small joints with high portion of IMC. The third part of this thesis aims to uncover the effect of minor alloying element, Ti, in the miniaturization of solder volume on the Ni-Sn and Cu-Sn solid-state reactions. The solid-state diffusion couples, Ni/Sn-2.4AgX/Ni and Cu/Sn-2.4AgX/Cu, were prepared by thermal compression and then isothermally aged at 150 – 200 °C. Ti participated in the solder as Ti2Sn3 in both Ni-Sn and Cu-Sn system. In addition, Ti addition have no apparent effect on the growth kinetics and morphology of Ni-Sn or Cu-Sn IMCs.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:34:19Z (GMT). No. of bitstreams: 1
ntu-105-F00527006-1.pdf: 6927462 bytes, checksum: 6795d1e0ab185382cdc100a59aef52dc (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
Acknowledge III
摘要 IV
Abstract VI
Contents IX
List of figures XII
List of tables XX
Chapter 1 Background introduction 1
1.1 Three dimensional integrated circuit (3D IC) 2
1.2 Intermetallics for structural application in 3D IC micro joints 8
1.3 Interfacial reaction under space confinement in 3D IC micro joints 10
1.4 Micromechanical behavior in 3D IC micro joints 12
1.4.1 Nanoindentation 13
1.4.2 Micropillar compression 16
1.4.3 Fracture toughness test 21
1.5 Aim of this thesis 24
Chapter 2 Micromechanical behaviors of intermetallics in 3D IC micro joints 26
2.1 Introduction 26
2.2 Experimental procedures 29
2.2.1 Synthesis of Sn-based intermetallic compound 29
2.2.2 Micropillar fabrication 32
2.2.3 Micropillar compression 33
2.2.4 Nanoidentation 36
2.3 Micropillar compression of single-crystalline Cu6Sn5 37
2.3.1 Micromechanical behavior of Cu6Sn5 37
2.3.2 Effect of anisotropy in Cu6Sn5 43
2.3.3 Young’s modulus of Cu6Sn5 48
2.4 Micropillar compression of single-crystalline Ni3Sn4 51
2.4.1 Micromechanical behavior of Ni3Sn4 51
2.4.2 Slip system existing in Ni3Sn4 53
2.4.3 Effect of anisotropy in Ni3Sn4 57
2.4.4 Young’s modulus of Ni3Sn4 59
2.5 The choice of potential structure material in microbumps 61
2.6 Concerns in micropillar compression 63
2.6.1 Damaged layer caused by ion-bombardment 63
2.6.2 Misalignment between flat punch and top pillar surface 64
2.6.3 Geometry of pillar 65
2.6.4 Strain rate 67
2.7 Summary 69
Chapter 3 Optimal Ag addition for the elimination of voids in Ni/SnAg/Ni micro joints 71
3.1 Introduction 71
3.2 Experimental procedures 73
3.3 Results and discussions 75
3.3.1 Solid-state reactions, Ag concentration ≦ 3.5 wt.% 75
3.3.2 Solid-state reactions, Ag concentration > 3.5 wt.% 82
3.3.3 Growth rates of Ni3Sn4 in solid state reactions 89
3.3.4 Solid-liquid reactions 92
3.4 Summary 96
Chapter 4 Effects of minor alloying addition on the formation of full intermetallics micro joints 98
4.1 Introduction 98
4.2 Experimental procedures 100
4.3 Results and discussions 102
4.3.1 Ni/Sn2.4AgX/Ni 102
4.3.2 Cu/Sn2.4AgX/Cu 106
4.3.3 Growth kinetics of interfacial IMCs with and without Ti addition 109
4.4 Summary 114
Chapter 5 Conclusions 115
Chapter 6 Future directions and open problems 118
Reference 120
Curriculum Vitae 134
dc.language.isoen
dc.title三維積體電路微接點中介金屬作為結構材之應用zh_TW
dc.titleIntermetallics for Structural Applications in Micro Joints of Three-Dimensional Integrated Circuits (3D ICs)en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee顏怡文,吳子嘉,何政恩,陳志銘
dc.subject.keyword三維積體電路,空間侷限,銀濃度,微添加,微米柱壓縮測試,zh_TW
dc.subject.keyword3D IC,space confinement,Ag concentration,minor alloying addition,micropillar compression,en
dc.relation.page138
dc.identifier.doi10.6342/NTU201602699
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
6.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved