Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49548
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹世鵬
dc.contributor.authorChun-Ming Hsuen
dc.contributor.author徐君明zh_TW
dc.date.accessioned2021-06-15T11:34:10Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-17
dc.identifier.citation1. Bartel, D.P., MicroRNAs: Target Recognition and Regulatory Functions. Cell, 2009. 136(2): p. 215-233.
2. Lin, S. and R.I. Gregory, MicroRNA biogenesis pathways in cancer. Nat Rev Cancer, 2015. 15(6): p. 321-333.
3. Kim, H.H., et al., HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev, 2009. 23(15): p. 1743-8.
4. Johnson, S.M., et al., RAS is regulated by the let-7 microRNA family. Cell, 2005. 120(5): p. 635-47.
5. Kumar, M.S., et al., Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A, 2008. 105(10): p. 3903-8.
6. Di Cello, F., et al., HMGA2 participates in transformation in human lung cancer. Mol Cancer Res, 2008. 6(5): p. 743-50.
7. Ambros, V., A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell, 1989. 57(1): p. 49-57.
8. Takamizawa, J., et al., Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res, 2004. 64(11): p. 3753-6.
9. Yu, F., et al., let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 2007. 131(6): p. 1109-23.
10. Dahiya, N., et al., MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One, 2008. 3(6): p. e2436.
11. O'Hara, A.J., et al., Tumor suppressor microRNAs are underrepresented in primary effusion lymphoma and Kaposi sarcoma. Blood, 2009. 113(23): p. 5938-41.
12. Schultz, J., et al., MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res, 2008. 18(5): p. 549-57.
13. Sampson, V.B., et al., MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res, 2007. 67(20): p. 9762-70.
14. Gramantieri, L., et al., Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res, 2007. 67(13): p. 6092-9.
15. Shimizu, S., et al., The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol, 2010. 52(5): p. 698-704.
16. Sun, J., et al., MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications. ScientificWorldJournal, 2013. 2013: p. 924206.
17. Agarwal, V., et al., Predicting effective microRNA target sites in mammalian mRNAs. Elife, 2015. 4.
18. Chi, S.W., et al., Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 2009. 460(7254): p. 479-86.
19. Helwak, A., et al., Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell, 2013. 153(3): p. 654-65.
20. Boissan, M., et al., The mammalian Nm23/NDPK family: from metastasis control to cilia movement. Mol Cell Biochem, 2009. 329(1-2): p. 51-62.
21. Cetkovic, H., et al., Nme family of proteins--clues from simple animals. Naunyn Schmiedebergs Arch Pharmacol, 2015. 388(2): p. 133-42.
22. Milon, L., et al., The human nm23-H4 gene product is a mitochondrial nucleoside diphosphate kinase. J Biol Chem, 2000. 275(19): p. 14264-72.
23. Schlattner, U., et al., Dual function of mitochondrial Nm23-H4 protein in phosphotransfer and intermembrane lipid transfer: a cardiolipin-dependent switch. J Biol Chem, 2013. 288(1): p. 111-21.
24. Kagan, V.E., et al., NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death Differ, 2016. 23(7): p. 1140-51.
25. Boissan, M., et al., Membrane trafficking. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science, 2014. 344(6191): p. 1510-5.
26. Lu, Y.C., et al., OncomiR-196 promotes an invasive phenotype in oral cancer through the NME4-JNK-TIMP1-MMP signaling pathway. Mol Cancer, 2014. 13: p. 218.
27. Desagher, S. and J.C. Martinou, Mitochondria as the central control point of apoptosis. Trends Cell Biol, 2000. 10(9): p. 369-77.
28. Karbowski, M. and R.J. Youle, Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ, 2003. 10(8): p. 870-80.
29. Hermann, G.J., et al., Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J Cell Biol, 1998. 143(2): p. 359-73.
30. Diaz, F. and C.T. Moraes, Mitochondrial biogenesis and turnover. Cell Calcium, 2008. 44(1): p. 24-35.
31. Wallace, D.C., Mitochondrial diseases in man and mouse. Science, 1999. 283(5407): p. 1482-8.
32. Wallace, D.C., Mitochondria and cancer. Nat Rev Cancer, 2012. 12(10): p. 685-98.
33. Frezza, C., et al., OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell, 2006. 126(1): p. 177-89.
34. Zhao, J., et al., Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene, 2013. 32(40): p. 4814-24.
35. Wallace, D.C., A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet, 2005. 39: p. 359-407.
36. Chen, H. and D.C. Chan, Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet, 2005. 14 Spec No. 2: p. R283-9.
37. Senft, D. and Z.e.A. Ronai, Regulators of mitochondrial dynamics in cancer. Current Opinion in Cell Biology, 2016. 39: p. 43-52.
38. Rehman, J., et al., Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB Journal, 2012. 26(5): p. 2175-2186.
39. Inoue-Yamauchi, A. and H. Oda, Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells. Biochemical and Biophysical Research Communications, 2012. 421(1): p. 81-85.
40. Hagenbuchner, J., et al., BIRC5/Survivin enhances aerobic glycolysis and drug resistance by altered regulation of the mitochondrial fusion/fission machinery. Oncogene, 2013. 32(40): p. 4748-57.
41. Masoudi, N., et al., The NM23-H1/H2 homolog NDK-1 is required for full activation of Ras signaling in C. elegans. Development, 2013. 140(16): p. 3486-95.
42. Tso, P.H., et al., RGS19 inhibits Ras signaling through Nm23H1/2-mediated phosphorylation of the kinase suppressor of Ras. Cell Signal, 2013. 25(5): p. 1064-74.
43. Heo, I., et al., Lin28 Mediates the Terminal Uridylation of let-7 Precursor MicroRNA. Molecular Cell, 2008. 32(2): p. 276-284.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49548-
dc.description.abstract微小核醣核酸(miRNA)是一種新穎的微小非編碼核醣核酸,它在後轉錄的層次上藉由和目標基因的三端不轉譯區以鹼基配對的方式來調控各種下游基因的表現。某些微小核醣核酸異常的表現會扮演著腫瘤抑制因子的角色,例如let-7,若不正常表現將會導致人類發育異常及腫瘤生成。在我們的報導中NME4是一個高可性度的let-7的目標基因,在人類胚胎腎細胞、肝癌細胞中加入過量的let-7模擬物會使NME4蛋白質有減少的趨勢,相反地,在用let-7的反義股抑制住let-7後使NME4蛋白質有增加的趨勢。接著我們將NME4的三端不轉譯區選殖到帶有冷光酵素基因的載體中,並且測量在細胞中加入了let-7模擬物及抑制物後冷光活性的變化,我們發現了let-7模擬物會降低帶有NME4三端不轉譯區質體的螢光表現而用let-7反義股將let-7抑制住則會提高螢光表現,另外,在TargetScan軟體預測NME4三端不轉譯區上的let-7結合位進行突變卻能使此現象消失,因此綜合以上我們認為NME4會受到let-7的調控。zh_TW
dc.description.abstractMicroRNAs (miRNAs) are an emerging class of small non-coding RNAs that regulate expression of various downstream genes at the post-transcriptional level, achieved through partial base-pairing between miRNAs and the target sequences at the 3’UTRs of mRNAs. Aberrant expression of certain miRNAs serving as tumor suppressors, such as let-7, leads to abnormal development and conduces to progression of human cancers. Here we report that the non-metastatic cells 4 (NME4) is a “high-confidence” let-7 target. The protein levels of NME4, examined by western blots, were down-regulated when excess amount of let-7 mimics were introduced into HEK293, Huh7 or HepG2 cells. By contrast, inhibition of let-7 by introducing antisense inhibitors increased the NME4 protein levels. We cloned the NME4 3’UTR into a luciferase vector and measured the luciferase activity of lysates prepared from the cells transfected with let-7 mimics or inhibitors. We found that let-7 mimics reduced the luciferase activity and let-7 inhibitors showed an opposite effect. Mutations of the putative let-7 target site at the NME4 3’UTR, predicted by the TargetScan miRNA target prediction software, eliminated the effects on the luciferase activity. Thus, we propose that NME4 is regulated by the let-7 miRNA. The biological implication of the let-7-NME4 regulation awaits further investigation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:34:10Z (GMT). No. of bitstreams: 1
ntu-105-R03445124-1.pdf: 3286518 bytes, checksum: 899be97702eb3e3b0b7895da766470ab (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
Chapter 1 Introduction 1
1.1 microRNA的功能 1
1.2 let-7和目標基因在癌症中扮演的角色 1
1.3 預測let-7目標基因的模型 2
1.4 NME4可能為let-7的目標基因 3
1.5 NME4的功能 4
1.6 癌症中NME4和粒線體動態平衡的關係 5
Chapter 2 Materials and methods 6
2.1 西方墨點法 6
2.1.1 膠體製備 6
2.1.2 電泳、轉印及抗體雜和 6
2.2 北方墨點法 7
2.2.1 實驗流程 7
2.2.2 探針製備 8
2.2.3 探針引子序列 8
2.3 聚合酶連鎖反應 8
2.4 細胞培養 9
2.4.1 細胞株 9
2.4.2 細胞培養環境 10
2.5 細胞轉染 10
2.6 基因沉默 11
2.6.1 siRNA基因沉默 11
2.6.2 shRNA 基因沉默 11
2.7 Luciferase assay 12
2.8 細胞萃取液製備 13
2.9 let-7模擬物及抑制物 14
2.10 粒線體染色 15
Chapter 3 Results 16
3.1 細胞中NME4的表現可能和let-7的表現有關 16
3.2 let-7會影響NME4的表現 16
3.3 let-7會直接經由三端不轉譯區調控NME4 17
3.4 let-7調控NME4的路徑可能會影響肝癌細胞中粒線體的形態 18
Chapter 4 Discussion 20
4.1 let-7經由NME4 之3端不轉譯區域調控其基因表現 20
4.2 let-7對NME4 3端不轉譯區域之冷光表現有不同程度的調控 20
4.3 NME4 可能會經由let-7影響粒線體的形態 21
4.4 NME4調控粒線體的形態可能和癌症有關 21
4.5 NME4可能參與RAS網絡相關蛋白的調控 22
Chapter 5 Figures 23
Fig 1. NME4的表現可能和let-7的表現有關 23
Fig 2. let-7對NME4蛋白質表現的調控 25
Fig 3. let-7經由三端不轉譯區調控NME4 27
Fig 4. let-7對NME4的調控可能影響肝癌細胞粒線體的形態 30
Chapter 6 References 31
Chapter 7 Appendix 34
附圖一、以系統生物學之研究策略探究微小核醣核酸辨認其目標結合位之模型……. 34
附圖二、以帶有shRNA的lentivirus將目標基因敲落來測試NME4、SERF2、TRABD的抗體是否可以應用 35
附圖三、在人類細胞內過量表現let-7家族模擬物後觀察NME4、TRABD、SERF2的表現. 36
附圖四、psicheck2-1-TRIM71 3’ UTR map 37
附圖五、psicheck2-1-NME4 3’ UTR map 38
附圖六、psicheck2-1-NME4 3’ UTR(del) map 39
附圖七、psicheck2-1-NME4 3’ UTR(mut) map 40
附圖八、GFP-NME4 質體構築流程 41
附圖九、觀察帶有線狀或塊狀粒線體的Huh7細胞 44
附表 一、Dual Luciferase Assay原始統計數據 45
dc.language.isozh-TW
dc.subject粒線體zh_TW
dc.subject微小核醣核酸zh_TW
dc.subject核?酸二磷酸激?zh_TW
dc.subjectlet-7en
dc.subjectmitochondriaen
dc.subjectNME4en
dc.titlelet-7微小核醣核酸調控核苷酸二磷酸激酶NME4基因表現zh_TW
dc.titleExpression of nucleoside diphosphate kinase NME4 is regulated by the let-7 microRNAen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐立中,蔡欣祐
dc.subject.keyword微小核醣核酸,核?酸二磷酸激?,粒線體,zh_TW
dc.subject.keywordlet-7,NME4,mitochondria,en
dc.relation.page51
dc.identifier.doi10.6342/NTU201602961
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved