Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49528
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor羅筱鳳
dc.contributor.authorChu-Chun Wuen
dc.contributor.author吳竺郡zh_TW
dc.date.accessioned2021-06-15T11:33:07Z-
dc.date.available2021-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citation王三太、許秀惠、陳甘澍、邱金春、李碩朋、林楨祐、羅惠齡、林照能、許淼淼、洪爭坊、張連宗、陳姵華. 2011. 氣候變遷對十字花科蔬菜育種的挑戰. 因應氣候變遷作物育種及生產環境管理研討會專刊. 行政院農委會農業試驗所編印. p. 135-152.
王仕賢、謝明憲. 2005. 甘藍. 臺灣農家要覽增修訂三版 農作篇(二). 財團法人豐年社. 臺北. p. 363-366.
王裕權、謝桑煙、陳博惠. 2002. 不同苗齡之甘藍與結球白菜移植苗對育苗品質及產量之影響. 臺南區農業改良產研究彙報 39:32-41.
石佩玉. 2011. 花椰菜對高溫淹水之生理反應. 國立臺灣大學園藝研究所碩士論文. 臺北市. 76pp.
石佩玉、施任青、張連宗、羅筱鳳. 2013. 花椰菜高溫淹水耐受性之生理指標. 臺灣園藝 59:191-204.
行政院農業委員會. 2014. 臺灣農業統計年報104年. 行政院農業委員會編印. 臺北.
姚靜樺. 2014. 選拔耐高溫淹水花椰菜及其相關形態與生理指標. 國立臺灣大學研究所碩士論文. 臺北市. 91pp.
姚銘輝、陳守泓、漆匡時. 2007. 利用葉綠素螢光估算作物葉片之光合作用. 臺灣農業研究 56:224-236.
曹幸之、羅筱鳳. 2014. 甘藍. 蔬菜(Ⅱ). 復文書局. 臺北. p. 93-97.
陳姵華. 2011. 甘藍對高溫淹水之生理反應. 國立臺灣大學園藝研究所碩士論文. 臺北市. 96pp.
陳姵華、謝明憲、張連宗、羅筱鳳. 2014. 甘藍對高溫淹水之生理反應. 臺灣園藝. 59:191-204.
陳葦玲. 2013. 作物耐熱性篩選指標之建立. 臺中區農業改良場特刊:217-220.
陳葦玲、郭孚燿、陳榮五. 2008. 淹水逆境對於不同栽培品種小白菜種子發芽及植株生長之影響. 臺中區農業改良場研究彙報:1-12.
陳葦玲、郭孚燿、陳榮五. 2009. 利用細胞膜熱穩定技術篩選高耐熱性葉用蘿蔔. 臺中區農業改良場研究彙報102:15-29.
廖芳心. 1993. 溫度對甘藍結球生理之效應. 桃園區農業改良場研究彙報:16-23.
劉敏莉. 2012. 葉綠素螢光在作物耐熱性篩選之應用. 高雄區農業改良場研究彙報 21:1-15.
戴振洋、蔡宜峰、郭孚燿. 1996. 肥料對不同品種甘藍穴盤苗生長之影響. 臺中區農業改良場研究彙報 50:11-20.
謝明芳. 2012. 結球白菜高溫淹水耐受性之篩選及生理反應. 國立臺灣大學園藝研究所術士論文. 臺北市. 112pp.
謝明憲、許涵鈞、王仕賢. 2011. 十字花科蕓苔屬蔬菜育種趨勢與生技應用概況. 農業生技產業季刊. 25:46-52.
謝明憲、劉依昌、許涵鈞、林棟樑、王仕賢. 2008. 十字花科蔬菜耐熱育種及採種. 農業生技產業應用研討會專輯. 行政院農業委員會臺南區農業改良場編印. 67-78.
Ahmed, S., E. Nawata, M. Hosokawa, Y. Domae, and T. Sakuratani. 2002. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 163:117-123.
Almeselmani, M., P. Deshmukh, R. Sairam, S. Kushwaha, and T. Singh. 2006. Protective role of antioxidant enzymes under high temperature stress. Plant Sci. 171:382-388.
Anderson, J., G. McCollum, and W. Roberts. 1990. High temperature acclimation in pepper leaves. HortScience 25:1272-1274.
Ashraf, M. and P. Harris. 2013. Photosynthesis under stressful environments: an overview. Photosynthetica 51:163-190.
Azia, F. and K.A. Stewart. 2001. Relationships between extractable chlorophyll and SPAD values in muskmelon leaves. Journal of Plant Nutrition 24:961-966.
Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Expt. Bot. 55:1607-1621.
Balakhnina, T., R. Bennicelli, Z. Stepniewska, W. Stepniewski, A. Borkowska, and I. Fomina. 2012. Stress responses of spring rape plants to soil flooding. Intl. Agrophysics 26:347-353.
Bin, T., S.Z. Xu, X.L. Zou, Y.L. Zheng, and F.Z. Qiu. 2010. Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging-tolerant and waterlogging-sensitive maize genotypes at seedling stage. Agr. Sci. China 9:651-661.
Camejo, D., A. Jiménez, J.J. Alarcón, W. Torres, J.M. Gómez, and F. Sevilla. 2006. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Functional Plant Biol. 33:177-187.
Camejo, D., P. Rodríguez, M.A. Morales, J.M. Dell’Amico, A. Torrecillas, and J.J. Alarcón. 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162:281-289.
Chauhan, Y.S. and T. Senboku. 1996. Thermostabilities of cell-membrane and photosynthesis in cabbage cultivars differing in heat tolerance. J. Plant Physiol. 149:729-734.
Chen, W.L., W.J. Yang, H.F. Lo, and D.M. Yeh. 2014. Physiology, anatomy, and cell membrane thermostability selection of leafy radish (Raphanus sativus var. oleiformis Pers.) with different tolerance under heat stress. Scientia Hort. 179:367-375.
Crafts-Brandner, S.J. and M.E. Salvucci. 2000. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc. Natl. Acad. Sci. 97:13430-13435.
De Moel, C. and A. Everaarts. 1990. Growth, development and yield of white cabbage in relation to time of planting. Acta Hort. 267:279-288.
FAOSTAT. 2014. Food and Agriculture Commodities Production: cabbages and other. 10. June. 2016. <http://faostat3.fao.org/browse/Q/QC/E>
Flexas, J., M. Ribas‐Carbó, J. Bota, J. Galmés, M. Henkle, S. Martínez‐Cañellas, and H. Medrano. 2006. Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol. 172:73-82.
Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930.
Gupta, N., S. Agarwal, V. Agarwal, N. Nathawat, S. Gupta, and G. Singh. 2013. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiol. Plant. 35:1837-1842.
Hara, T., A. Nakagawa, and Y. Sonoda. 1982. Effects of nitrogen supply and removal of outer leaves on the head development of cabbage plants. J. Jpn. Soi. Hort. Sci.
Hasanuzzaman, M., K. Nahar, M.M. Alam, and M. Fujita. 2014. Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol. trace element Res. 161:297-307.
Health, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198.
Hiller, R.G. and J.K. Raison. 1980. The fluidity of chloroplast thylakoid membranes and their constituent lipids: A comparative study by ESR. BBA-Biomembranes 599:63-72.
Himelrick, D., C. Wood, and W. Dozier Jr. 1992. Relationship between SPAD-502 meter values and extractable chlorophyll in strawberry. Adv. Strawberry Res. 11:59-61
Howe, T. and W. Waters. 1994. Two-year summary of cabbage cultivar yield trials. Fla. State Hort. Soc. 107:95-99.
Irfan, M., S. Hayat, Q. Hayat, S. Afroz, and A. Ahmad. 2010. Physiological and biochemical changes in plants under waterlogging. Protoplasma 241:3-17.
Jana, S. and M.A. Choudhuri. 1982. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat. Bot. 12:345-354.
Jensen, R.G. 2000. Activation of Rubisco regulates photosynthesis at high temperature and CO2. Proc. Natl. Acad. Sci. 97:12937-12938.
Kato, M. and S. Shimizu. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degration in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Can J. Bot. 65:729-735.
Keleş, Y. and I. Öncel. 2002. Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci. 163:783-790.
Kleinhenz, M.D. and A. Wszelaki. 2003. Yield and relationships among head traits in cabbage as influenced by planting date and cultivar. I. Fresh market. HortScience 38:1349-1354.
Kumar, P., M. Pal, R. Joshi, and R. Sairam. 2013a. Yield, growth and physiological responses of mung bean (Vigna radiata L. Wilczek.) genotypes to waterlogging at vegetative stage. Physiol. Mol. Biol. Plants 19:209-220.
Kumar, S., R. Sairam, and K. Prabhu. 2013b. Physiological traits for high temperature stress tolerance in Brassica juncea. Indian J. Plant Physiol. 18:89-93.
Kumutha, D., K. Ezhilmathi, R. Sairam, G. Srivastava, P. Deshmukh, and R. Meena. 2009. Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes. Biol. Plant. 53:75-84.
Kuo, C., H. Chen, and H. Sun. 1992. Membrane thermostability and heat tolerance of vegetable leaves. Adaptation of food crops to temperature and water stress:160-168.
Lichtenthaler, H.K. and A.R. Wellburn. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11:591-592.
Lin, K. H.R., C.C. Weng, H.F. Lo, and J.T. Chen. 2004. Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions. Plant Sci. 167:355-365.
Maheswari, M., S.K. Yadav, A.K. Shanker, M.A. Kumar, and B. Venkateswarlu. 2012. Overview of plant stresses: metabolisms, adaptations and research pursuit. In: B. Venkateswarlu, C. Shanker, Arun K. Shanker, and M. Maheswari (eds.). Crop stresses and its management: perspectives and strategies. Springer., NY.
Martineau, J., J. Specht, J. Williams, and C. Sullivan. 1979. Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci. 19:75-78.
Mirza, H., M. A. Hossain, A. Jaime, T. da Silva, and F. Masayuki. 2012. Plant response and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In: B. Venkateswarlu, C. Shanker, Arun K. Shanker, and M. Maheswari (eds.). Crop stresses and its management: perspectives and strategies. Springer., NY.
Nakano, Y. and Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867-880.
Nilsson, T. 1988. Growth and carbohydrate composition of winter white cabbage intended for long-term storage. II. Effects of solar radiation, temperature and degree-days. J. Hort. Sci 63:431-441.
Nyarko, G., P.G. Alderson, J. Craigon, E. Murchie, and D.L. Sparkes. 2008. Comparison of cell membrane thermostability and chlorophyll fluorescence parameters for the determination of heat tolerance in ten cabbage lines. J. Hort. Sci. Biotechnol 83:678-682.
O'Neill, P.M., J.F. Shanahan, and J.S. Schepers. 2006. Use of chlorophyll fluorescence assessments to differentiate corn hybrid response to variable water conditions. Crop Sci. 46:681-687.
Pociecha, E., J. Kościelniak, and W. Filek. 2008. Effects of root flooding and stage of development on the growth and photosynthesis of field bean (Vicia faba L. minor). Acta Physiol. Plant. 30:529-535.
Porra RJ. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophyll a and b. Photosyn. Res. 73:149-156.
Radovich, T.J., M.D. Kleinhenz, J.F. Delwiche, and R.E. Liggett. 2004a. Triangle tests indicate that irrigation timing affects fresh cabbage sensory quality. Food Quality and Preference 15:471-476.
Radovich, T. J., M. D. Kleinhenz, and N. J. Honeck. 2004b. Important cabbage head traits and their relationships at five points in development. J. Veg. Crop Prod. 10:19-32.
Radovich, T. J., M. D. Kleinhenz, and J. G. Streeter. 2005a. Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. J. Amer. Soc. Hort. Sci. 130:943-949.
Radovich, T. J., M. D. Kleinhenz, J. G. Streeter, A. R. Miller, and J. C. Scheerens. 2005b. Planting date affects total glucosinolate concentrations in six commercial cabbage cultivars. HortScience 40:106-110.
Schaedle M. and J.A. Bassham. 1977. Chloroplast glutathione reductase. Plant Physiol. 59:1011-1012.
Schaper, H. and E. Chacko. 1991. Relation between extractable chlorophyll and portable chlorophyll meter readings in leaves of eight tropical and subtropical fruit-tree species. J. Plant Physiol. 138:674-677.
Setter, T. and I. Waters. 2003. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253:1-34.
Silva, M.D.A., J.L. Jifon, J.A. Da Silva, and V. Sharma. 2007. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian J. Plant Physiol. 19:193-201.
Simova-Stoilova, L., K. Demirevska, A. Kingston-Smith, and U. Feller. 2012. Involvement of the leaf antioxidant system in the response to soil flooding in two Trifolium genotypes differing in their tolerance to waterlogging. Plant Sci. 183:43-49.
Sullivan, C.Y. 1972. Mechanisms of heat and drought resistance in grain sorghum and methods of measurement. Sorghum in Seventies. Oxford & IBH Pub. Co. India.
Sundstrom, F. and R. Story. 1984. Cultivar and growing season effects on cabbage head development and weight loss during storage. HortScience 19:589-590.
Taiz, L. and E. Zeiger. 2010. Plant physiology. 5th ed. Sinauer Associates, Inc., Sunderland, MA.
Tracewell, C. A., J.S. Vrettos, J.A. Bautista, H.A. Frank, and G.W. Brudvig. 2001. Carotenoid photooxidation in photosystem II. Arch. Biochem. Biophys. 385:61-69.
Uddling, J., J. Gelang-Alfredsson, K. Piikki, and H. Pleijel. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosyn. Res. 91:37-46.
Van Breusegem, F. and J.F. Dat. 2006. Reactive oxygen species in plant cell death. Plant Physiol. 141:384-390.
Wahid, A., S. Gelani, M. Ashraf, and M. R. Foolad. 2007. Heat tolerance in plants: an overview. Environ. Expt. Bot. 61:199-223.
Wang, C.-H., D.-M. Yeh, and C.-S. Sheu. 2008. Heat tolerance and flowering-heat-delay sensitivity in relation to cell membrane thermostability in chrysanthemum. J. Amer. Soc. Hort. Sci. 133:754-759.
Wang, Y., M. Wisniewski, R. Meilan, M. Cui, and L. Fuchigami. 2006. Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J. Appl. Hort. 8:87-90.
Wilson, R.A., M. Sangha, S. Banga, A. Atwal, and S. Gupta. 2014. Heat stress tolerance in relation to oxidative stress and antioxidants in Brassica juncea. J. Environ. Biol. 35:383-387.
Wood, C., D. Reeves, and D. Himelrick. 1993. Relationships between chlorophyll meter readings and leaf chlorophyll concentration, N status, and crop yield: a review. Proc. Agron. Soc. Nz. 23:1-9.
Yeh, D. and P. Hsu. 2004. Heat tolerance in English ivy as measured by an electrolyte leakage technique. J. Hort. Sci. Biotechnol. 79:298-302.
Yeh, D. and H. Lin. 2003. Thermostability of cell membranes as a measure of heat tolerance and relationship to flowering delay in chrysanthemum. J. Amer. Soc. Hort. Sci. 128:656-660.
Yin, X. and Q. Luo. 2001. Studies on method for identification of heat tolerance of tomato. Southwest China J. Agr. Sci. 14:62-66.
Yordanova, R.Y. and L.P. Popova. 2007. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol. Plant. 29:535-541.
Zhang, X.Y., C.G. Hu, and J.L. Yao. 2010. Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. J. Plant Physiol. 167:88-94.
Zheng, C., D. Jiang, F. Liu, T. Dai, Q. Jing, and W. Cao. 2009. Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci. 176:575-582.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49528-
dc.description.abstract甘藍(Brassica oleracea L. var. capitata)是臺灣產量最高之葉菜類作物,但夏季高溫多雨使甘藍生產困難,選拔耐高溫淹水品種為當前甘藍產業所需。本研究以甘藍 ‘228’ 、 ‘臺南2號’ 、 ‘青翠’ 、 ‘初秋’ 、 ‘高峰’ 、 ‘夏秋’ 、 ‘大芯’ 與 ‘臺中2號’ 為試驗材料,探討葉綠素螢光、光合色素、過氧化氫(hydrogen peroxide, H2O2)、抗氧化酵素包括過氧化氫酶(catalase, CAT)、抗壞血酸過氧化酶(ascorbate acid peroxidase, APX) 和穀胱甘肽還原酶(glutathione reductase, GR)、以及丙二醛(malondialdehyde, MDA)和細胞膜熱穩定性(cell membrane thermostability, CMT),應用於苗期選拔耐高溫淹水甘藍之可行性。2015年臺南田間夏作不淹水之對照組,結球率與葉球重以 ‘228’ 、 ‘高峰’ 、 ‘青翠’ 和 ‘臺中2號’ 表現較佳,視為耐高溫品種;而 ‘初秋’ 、 ‘夏秋’ 、 ‘臺南2號’ 和 ‘大芯’ 表現不佳,為不耐高溫品種。夏作田間於結球初期淹水2天, ‘高峰’ 和 ‘臺南2號’ 葉球重分別為0.27 kg 和0.38 kg,為8品種中顯著最重,視為高溫下耐淹水品種;而 ‘228’ 和 ‘大芯’ 無結球,視為高溫下不耐淹水品種。2015年田間秋作,甘藍結球初期經淹水2天後,其葉球鮮重介於0.6 ~ 0.81 kg,皆較不淹水組0.39 ~ 0.53 kg高,可能淹水處理補足其水份需求。八品種苗株經25℃/20℃淹水2天後,鮮重、乾重、葉面積和壯苗指數之相對生長參數較佳的 ‘臺南2號’ ,其葉片APX活性提升較多,H2O2累積較少,但其餘7品種苗株生長受淹水抑制,與秋作淹水與不淹水後之產量趨勢不符。耐高溫 ‘臺中2號’ 幼苗葉圓片經45℃水浴20 min之細胞膜熱相對傷害值為19.76%,係8品種中顯著最低,而不耐高溫 ‘大芯’ 52.22% 為顯著最高,且8品種之細胞膜熱相對傷害值與夏作葉球重之間呈顯著相關(R = 0.76);八品種苗株經35℃/30℃處理12 h 之葉片APX相對活性、處理48 h葉綠素、類胡蘿蔔素與MDA之相對含量,以及處理48 h後恢復5天時之相對葉面積,亦與夏作葉球重之間呈顯著相關(p < 0.05),其相關係數R分別為0.8827、0.8174、0.7786、-0.7658和0.737。而8品種苗株經35℃/30℃淹水48 h 之葉片APX相對活性與夏作淹水後之葉球鮮重間亦呈顯著相關(p < 0.05);此外,耐高溫淹水 ‘臺南2號’ 葉綠素和類胡蘿蔔素之相對含量顯著高於不耐高溫淹水 ‘大芯’ ;而H2O2相對含量以 ‘臺南2號’ 顯著低於 ‘大芯’ 。綜上,幼苗之葉圓片細胞膜熱相對傷害值以及高溫處理48 h之葉片葉綠素、類胡蘿蔔素和MDA的相對含量可做為篩選耐高溫甘藍之苗期指標,處理高溫12 h和高溫淹水48 h之APX相對活性分別可做為選拔耐高溫和耐高溫淹水甘藍之苗期指標,而葉片葉綠素、類胡蘿蔔素和H2O2之相對含量則可作為選拔耐高溫淹水甘藍之參考,期有助於縮短耐熱及耐高溫淹水甘藍之選育時間。zh_TW
dc.description.abstractCabbage (Brassica oleracea L. var. capitata) is an important leafy vegetable crop in Taiwan. Due to high temperature and rainfall, the cabbage production in Taiwan is limited in summer. Developing high temperature and waterlogging-tolerant cabbage is one of the current goals for the industry. Cabbage ‘228’, ‘Tainan no.2’, ‘Ching-tsui’, ‘KY-cross’, ‘HV-023’, ‘HV-022’, ‘Daishin’ and ‘Taichung no.2’ were used as experimental materials. This study aimed at the utilization of physiological index as chlorophyll fluorescence, photosynthetic pigment, hydrogen peroxide (H2O2), antioxidase including catalase (CAT), ascorbate acid peroxidase (APX) and glutathione reductase (GR), as well as malondialdehyde (MDA) and cell membrane thermostability (CMT) in seedling stage to select tolerant lines. In 2015 summer, according to heading rate and head weight under no waterlogging stress, ‘228’, ‘HV-023’, ‘Ching Tsui’ and ‘Taichung no. 2’ are considered to be heat-tolerant cultivars, while ‘KY cross’, ‘HV-022’, ‘Tainan no. 2’ and ‘Daishin’ are considered to be heat-sensitive cultivars. After 2-days waterlogging treatment in summer, ‘HV-023’ and ‘Tainan no. 2’ showed the heaviest head 0.27 kg and 0.38 kg, respectively and were regarded as waterlogging-tolerant at high temperature. Whereas ‘228’ and ‘Daishin’ showed no heading, thus, were regarded as waterlogging-sensitive at high temperature. In 2015 autumn, the head weights in 8 cabbage cultivars were 0.6~0.81 kg after waterlogging, which were higher than the weight without waterlogging, 0.39~0.53 kg. After waterlogging at 25℃/20℃, ‘Tainan no. 2’, with better relative growth on fresh weight, dry weight, leaf area and seedling index in seedlings, showed the highest APX relative activity and the least H2O2 relative content. The growth of 8 cultivars cabbage was inhibited by waterlogging at 25℃/20℃ in seedling stage, while not in the field in autumn. After water bath at 45℃ for 20 min, heat-tolerant ‘Taichung no. 2’ had the least relative injury (RI) 19.76%, while heat-sensitive ‘Daishin’ had the highest RI 52.22%. The correlation between the RI and the head weight in summer showed high significance (R = 0.76). The correlation of head weight in summer also showed significance (p < 0.05) with the relative activity of APX (R = 0.8827) after treatment for 12 h, the chlorophyll (R = 0.8147), carotenoid (R = 0.7786) and MDA (R = -0.7658) relative content after treatment for 48 h and the relative leaf area after recovery for 5 d (R = 0.737). ‘Tainan no. 2’, tolerant to waterlogging stress at high temperature, also had better performance than high temperature and waterlogging-sensitive ‘Daishin’ in the relative contents of chlorophyll, carotenoid and H2O2 under waterlogging at 35℃/30℃ in seedling stage. In addition, head weight after waterlogging in summer showed significant correlation with APX relative activity after waterlogging for 48 h at 35℃/30℃ in seedling stage. In conclusion, CMT, APX relative activity after 35℃/30℃ treatment for 12 h, the relative content of chlorophyll, carotenoid and MDA after 35℃/30℃ treatment for 48 h can be used as seedling index for selecting heat-tolerant cabbage. APX relative activity after waterlogging at 35℃/30℃ for 48 h can also be applied for selecting waterlogging-tolerant cabbage at high temperature. Besides, chlorophyll, carotenoid and H2O2 relative content might also be a tool to screen the tolerance to waterlogging at high temperature for cabbage. The period for breeding cabbage shall be shortened.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:33:07Z (GMT). No. of bitstreams: 1
ntu-105-R03628128-1.pdf: 3335069 bytes, checksum: 3ef06389d11d42dd5c61199c0452d82e (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents論文口試委員審定書…i
誌謝…ii
中文摘要...iii
英文摘要…v
目錄…vi
圖目錄…ix
表目錄…x
第一章 前言…1
第二章 前人研究
一、甘藍概述…2
二、選育耐高溫淹水品種之指標建立…4
三、作物於高溫淹水逆境下之生理反應…5
第三章 材料與方法
一、夏季淹水試驗…12
二、秋冬季淹水試驗…13
三、甘藍苗之細胞膜熱穩定試驗…14
四、甘藍苗於高溫淹水逆境下之生長及生理反應試驗…14
第四章 結果
一、夏季淹水試驗…19
二、秋冬季淹水試驗…20
三、甘藍苗之細胞膜熱穩定試驗…22
四、甘藍苗於高溫淹水逆境下之生長及生理反應試驗…23
第五章 討論…34
第六章 結論…45
參考文獻…104
附錄…114
dc.language.isozh-TW
dc.subject丙二醛zh_TW
dc.subject甘藍zh_TW
dc.subject細胞膜熱相對傷害值zh_TW
dc.subject葉綠素zh_TW
dc.subject類胡蘿蔔素zh_TW
dc.subjectchlorophyllen
dc.subjectcarotenoiden
dc.subjectcabbageen
dc.subjectcell membrane thermostabilityen
dc.subjectmalondialdehyde (MDA)en
dc.title耐高溫淹水甘藍苗期生理指標研究zh_TW
dc.titleStudy on physiological index in seedlings for selecting high temperature and waterlogging tolerant cabbageen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊雯如,林淑怡
dc.subject.keyword甘藍,細胞膜熱相對傷害值,葉綠素,類胡蘿蔔素,丙二醛,zh_TW
dc.subject.keywordcabbage,cell membrane thermostability,chlorophyll,carotenoid,malondialdehyde (MDA),en
dc.relation.page120
dc.identifier.doi10.6342/NTU201602738
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
Appears in Collections:園藝暨景觀學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
3.26 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved