Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49523
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹世鵬(SHIH-PENG CHAN)
dc.contributor.authorChiao-Nung Chenen
dc.contributor.author陳巧儂zh_TW
dc.date.accessioned2021-06-15T11:32:52Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-17
dc.identifier.citation1. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
2. Arasu, P., B. Wightman, and G. Ruvkun, Temporal regulation of lin-14 by the antagonistic action of two other heterochronic genes, lin-4 and lin-28. Genes Dev, 1991. 5(10): p. 1825-33.
3. Lee, R.C., R.L. Feinbaum, and V. Ambros, The Caenorhabditis elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54.
4. Wightman, B., I. Ha, and G. Ruvkun, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in Caenorhabditis elegans. Cell, 1993. 75(5): p. 855-62.
5. Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000. 403(6772): p. 901-6.
6. Medina, P.P. and F.J. Slack, microRNAs and cancer: an overview. Cell Cycle, 2008. 7(16): p. 2485-92.
7. Stefani, G. and F.J. Slack, Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol, 2008. 9(3): p. 219-30.
8. Nimmo, R.A. and F.J. Slack, An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma, 2009. 118(4): p. 405-18.
9. He, L., et al., A microRNA polycistron as a potential human oncogene. Nature, 2005. 435(7043): p. 828-33.
10. Skalsky, R.L. and B.R. Cullen, Viruses, microRNAs, and host interactions. Annu Rev Microbiol, 2010. 64: p. 123-41.
11. van Rooij, E., et al., Development of microRNA therapeutics is commimg of age. EMBO Mol Med, 2014. 6(7): p.851-864.
12. Pasquinelli, A.E., et al., Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000. 408(6808): p. 86-9.
13. Ambros, V. and H.R. Horvitz, Heterochronic mutants of the nematode Caenorhabditis elegans. Science, 1984. 226(4673): p. 409-16.
14. Ambros, V., A hierarchy of regulatory genes controls a larva-to-adult developmental switch in Caenorhabditis elegans. Cell, 1989. 57(1): p. 49-57.
15. Roush, S., et al., The let-7 familyof microRNAs. Trands Cell Biol, 2008. 18(10); p.505-16
16. Abbott, A.L., et al., The let-7 MicroRNA family members miR-48, mir-84, and miR-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell, 2005. 9(3): p. 403-14.
17. Bussing, I., F.J. Slack, and H. Grosshans, let-7 microRNAs in development, stem cells and cancer. Trends Mol Med, 2008. 14(9): p. 400-9.
18. Vella, M.C., et al., The Caenorhabditis elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. Genes Dev, 2004. 18(2): p. 132-7.
19. Calin, G.A., et al., Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 2004. 101(9): p. 2999-3004.
20. Babar, I.A., et al., Nanoparticle-based therapy in an in vivo microRNA-155(miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A, 2012. 109(26): p. E1695-704.
21. Rocak, S. and P. Linder, DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol, 2004. 5(3): p. 232-41.
22. Fuller-Pace, F.V., RNA helicases: modulators of RNA structure. Trends Cell Biol, 1994. 4(8): p. 271-4.
23. Linder, P. and E. Jankowsky, From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol, 2011. 12(8): p. 505-16.
24. de la Cruz, J., D. Kressler, and P. Linder, Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci, 1999. 24(5): p. 192-8.
25. Heung, L.J. and M. Del Poeta, Unlocking the DEAD-box: a key to cryptococcal virulence? J Clin Invest, 2005. 115(3): p. 593-5.
26. Fukuda, T., et al., DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol, 2007. 9(5): p. 604-11.
27. Hammell, C.M., et al.,nhl-2 Modulates microRNA activity in Caenorhabditis elegans. Cell, 2009. 136(5): p. 926-38
28. Salinas, L.S., et al., The DEAD box RNA helicase VBH-1 is required for germ cell function in Caenorhabditis elegans. Genesis, 2007. 45(9): p. 533-46.
29. Paz-Gomez, D., E. Villanueva-Chimal, and R.E. Navarro, The DEAD Box RNA helicase VBH-1 is a new player in the stress response in Caenorhabditis elegans. PLoS One, 2014. 9(5): p. e97924.
30. Park, S.H., et al., Assignment of a human putative RNA helicase gene, DDX3, to human X chromosome bands p11.3-->p11.23. Cytogenet Cell Genet, 1998. 81(3-4): p. 178-9.
31. Kim, Y.S., et al., Gene structure of the human DDX3 and chromosome mapping of its related sequences. Mol Cells, 2001. 12(2): p. 209-14.
32. You, L.R., et al., Hepatitis C virus core protein interacts with cellular putative RNA helicase. J Virol, 1999. 73(4): p. 2841-53.
33. Krishnan, V. and S.L. Zeichner, Alterations in the expression of DEAD-box and other RNA binding proteins during HIV-1 replication. Retrovirology, 2004. 1: p. 42.
34. Lai, M.C., Y.H. Lee, and W.Y. Tarn, The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol Biol Cell, 2008. 19(9): p. 3847-58.
35. J-W Shih., et al., Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene, 2008. 27: p. 700–714.
36. Chang, P.C., et al., DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control. Oncogene, 2006. 25(14): p. 1991-2003.
37. Botlagunta M, Vesuna F, Mironchik Y, Raman A, Lisok A Jr, Winnard P., et al., Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene, 2008. 27(28): p. 3912-3922.
38. Wilky BA, Kim C, McCarty G, Montgomery EA, Kammers K, DeVine LR, Cole RN, Raman V, Loeb DM. RNA helicase DDX3: a novel therapeutic target in Ewing sarcoma. Oncogene, 2016.19;35(20): p. 2574-83.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49523-
dc.description.abstractMicroRNAs(miRNAs)是微小單股具調節性的核醣核酸,通常在後轉錄階段(post-transcriptional level)控制基因的表現。miRNAs影響非常廣泛層面的生物作用機制,他們的功能缺失可導致許多人類疾病與癌症。在miRNA生合成及作用時,RNA-protein的交互作用及RNA的構型重組,都可能需要屬於DExD/H-box蛋白家族核醣核酸解旋酶(RNA helicase)活性的參與。我們在線蟲中利用RNA干擾的方式去除VBH-1表現,發現會加強由let-7基因突變所造成的異常性狀。顯示VBH-1可能在let-7相關基因調節中扮演正向調控的角色。但降低VBH-1表現並不會減少let-7的表現量。因此,先前所看到降低VBH-1表現,導致增強的let-7缺陷性狀並不是因為let-7的表現量減少,而可能是與微型核醣核酸沈默複合體(miRISC)的功能有關。利用gfp螢光報告基因帶有已知為let-7目標基因lin-41的3' UTR來探討VBH-1對於let-7調控目標基因的可能影響,發現降低VBH-1表現會使得原本受let-7調節抑制的螢光略為回復。本篇我們利用anti-sense oligonucleotide pull-down assay探討let-7是否會跟VBH-1有交互作用,發現anti-let-7反應中可以偵測到Argonaute蛋白與VBH-1。已知在線蟲的體側表皮接縫細胞(seam cell)的分裂與分化過程中,需要較高的miRNA以及Argonaute活性。在我們基因轉殖的線蟲中也發現GFP-VBH-1大量表現於seam cell中,這支持我們的假說,亦即VBH-1可能參與miRISC的功能。而我們在線蟲共同免疫沈澱也可以看到VBH-1與ALG-1有交互作用。另一方面,我們也探討人類VBH-1的同源性蛋白DDX3和Argonaute 蛋白 AGO2之間的交互作用。有趣的是,我們利用共同免疫沈澱法發現DDX3和AGO2之間存在RNA independent的交互作用。並且以免疫螢光染色法可以觀察到DDX3與AGO2在細胞質會有相同表現的位置,而這個位置可能為P bodies(Processing bodies)。另一方面,當我們利用siRNA降低人類細胞中DDX3的表現量時,會減低let-7對3’ UTR帶有 let-7 binding site的luciferase reporter的負向調控。綜合以上結果可知,VBH-1/DDX3會和Argonaute蛋白交互作用並且有助於miRISC的功能。zh_TW
dc.description.abstractMicroRNAs(miRNAs) are small non-coding regulatory RNAs that usually regulate gene expression at the post-transcriptional level. They are involved in a broad spectrum of biological processes and their dysfunction is frequently associated with a variety of human cancers. In miRNA biogenesis and functioning, remodeling of RNA structures or RNA-protein interactions may require the RNA helicase activity of the DEAD-box proteins. In this study, we found that depletion of the DEAD-box protein VBH-1 by RNAi in Caenorhabditis elegans induced heterochronic phenotypes associated with let-7 mutations, suggesting that VBH-1 may play a positive role in let-7 miRNA-mediated gene regulation. Depletion of VBH-1 did not decrease the levels of let-7 miRNA. Thus, the induction of let-7 mutant phenotypes by vbh-1(RNAi) may not stem from lower levels of let-7 but probably from a failure in miRISC function. In addition, we used a gfp reporter fused with the 3’ UTR of lin-41, which is a known let-7 target, to determine the effect of vbh-1(RNAi) on let-7 regulation. We found that vbh-1(RNAi) relieved the let-7 repression on the reporter, consistent with the seen phenotypes upon vbh-1(RNAi). Moreover, we detected both the Argonaute ALG-1 and VBH-1 in an anti-let-7 oligonucleotide pull down assay, suggesting an interaction between VBH-1 and the miRISC machinery. Regulation of proliferation and differentiation of the epithelial seam cell requires active let-7/miRISC activity, where we detected a high level of VBH-1 expression by monitoring a stable GFP::VBH-1 strain prepared in this work. We also found an interaction between ALG-1 and VBH-1 in C. elegans by co-immunoprecipitation. These results support our hypothesis that VBH-1 is involved in the miRISC function. Interestingly, we also detected an interaction between human DDX3, the ortholog of C. elegans VBH-1, and the Argonaute protein AGO2 by co-immunoprecipitation. By immunofluorescence assays, we observed concentrated DDX3 signals colocalized with AGO2 at distinct cytoplasmic foci. On the other hand, we found that DDX3 knockdown by siRNA derepressed the control of a luciferase reporter carrying let-7 binding sites in the 3' UTR. Taken together, our results suggest that VBH-1/DDX3 interacts with the Argonaute and facilitates miRISC function.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:32:52Z (GMT). No. of bitstreams: 1
ntu-105-R03445119-1.pdf: 9435999 bytes, checksum: 7e16377e8240eaa472b60cfe874dcf5a (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
中文摘要 1
ABSTRACT 3
目錄 5
Chapter1 簡介 8
1.1 MicroRNAs 8
1.2 let-7 9
1.3 DEAD-box RNA helicase 11
1.4 VBH-1 14
1.5 DDX3 15
Chapter2 材料與方法 17
2.1 2'-O-methyl oligonucleotide pull-down assay 17
2.1.1 實驗材料 17
2.1.2 實驗步驟 18
2.2 北方墨點法 19
2.2.1 實驗材料 19
2.2.2 實驗步驟 21
2.3 西方墨點法 22
2.3.1 實驗材料 22
2.3.2 實驗步驟 25
2.4 MosSCI microinjection 27
2.4.1 實驗材料 27
2.4.2 實驗質體構築 30
2.4.3 實驗步驟 32
2.5 細胞轉染 33
2.5.1 實驗材料 33
2.5.2 實驗方法 33
2.6 共同免疫沈澱法 35
2.6.1 實驗材料 35
2.6.2 實驗步驟 36
2.7 免疫螢光染色法 37
2.7.1 實驗材料 37
2.7.2 實驗步驟 38
2.8 Luciferase assay 39
2.8.1 實驗材料 39
2.8.2 實驗質體構築 40
2.8.3 實驗步驟 40
2.9 RNA Interference(RNAi) 41
2.9.1 實驗材料 41
2.9.2 實驗方法 43
Chapter3 結果 45
3.1 let7 pull-down assay發現可以同時偵測到VBH-1與ALG-1 45
3.2 利用transgenic C. elegans發現VBH-1與ALG-1共同表現於seam cell之中 45
3.3 人體細胞中DDX3和AGO2有螢光共位現象 46
3.4 人體細胞中DDX3和AGO2存在蛋白質之間直接的交互作用 47
3.5 人體細胞中DDX3會影響let-7執行功能 48
Chapter4 討論 50
4.1 VBH-1/DDX3 50
Chapter5 圖表 53
5.1 圖一 let-7和VBH-1及ALG-1有交互作用 53
5.2 圖二 VBH-1與ALG-1在線蟲seam cell中會大量表現 54
5.3 圖三 帶有標記的VBH-1與ALG-1有交互作用 55
5.4 圖四 人體細胞中DDX3和AGO2在細胞中共同聚集 56
5.5 圖五 DDX3和AGO2之間存在RNA-independent交互作用 57
5.6 圖六 在人體細胞中DDX3扮演著促進let-7功能的角色 58
Chapter6 參考文獻 59
附錄 64
附錄ㄧ 64
附錄二 65
附錄三 66
附錄四 66
附錄五 67
附錄六 69
附錄七 70
dc.language.isozh-TW
dc.subjectAGO2zh_TW
dc.subjectmicroRNAzh_TW
dc.subjectlet-7zh_TW
dc.subjectDDX3zh_TW
dc.subjectVBH-1zh_TW
dc.subjectmiRISCzh_TW
dc.titleDEAD-box 核糖核酸解旋酶VBH-1/DDX3在let-7功能中所扮演的角色zh_TW
dc.titleThe role of DEAD-box RNA helicase VBH-1/DDX3 in let-7 microRNA functionen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱家瑩(Chia-Ying Chu),賴銘志(Ming-Chih Lai)
dc.subject.keywordmicroRNA,let-7,DDX3,VBH-1,miRISC,AGO2,zh_TW
dc.relation.page70
dc.identifier.doi10.6342/NTU201602926
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
9.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved