Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49516
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾明宗(Ming-Tsung Tseng)
dc.contributor.authorSung-Ling Yangen
dc.contributor.author楊松陵zh_TW
dc.date.accessioned2021-06-15T11:32:30Z-
dc.date.available2026-12-31
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-17
dc.identifier.citationAlbanese MC, Duerden EG, Rainville P, Duncan GH (2007) Memory traces of pain in human cortex. Journal of Neuroscience 27:4612-4620.
Atlas LY, Wager TD (2012) How expectations shape pain. Neurosci Lett 520:140-148.
Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, Fell J (2010) Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences of the United States of America 107:3228-3233.
Beck AT, Steer RA, Brown GK (1996) Manual for the Beck Depression Inventory-II.: San Antonio, TX: Psychological Corporation. .
Bonner MF, Peelle JE, Cook PA, Grossman M (2013) Heteromodal conceptual processing in the angular gyrus. Neuroimage 71:175-186.
Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The Analysis of Visual-Motion - a Comparison of Neuronal and Psychophysical Performance. Journal of Neuroscience 12:4745-4765.
Brown CA, Seymour B, Boyle Y, El-Deredy W, Jones AKP (2008) Modulation of pain ratings by expectation and uncertainty: Behavioral characteristics and anticipatory neural correlates. Pain 135:240-250.
Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain's default network - Anatomy, function, and relevance to disease. Ann Ny Acad Sci 1124:1-38.
Buhle J, Wager TD (2010) Performance-dependent inhibition of pain by an executive working memory task. Pain 149:19-26.
Bunzeck N, Doeller CF, Dolan RJ, Duzel E (2012) Contextual interaction between novelty and reward processing within the mesolimbic system. Hum Brain Mapp 33:1309-1324.
Cabeza R, Ciaramelli E, Olson IR, Moscovitch M (2008a) The parietal cortex and episodic memory: an attentional account. Nature Reviews Neuroscience 9:613-625.
Cabeza R, Ciaramelli E, Olson IR, Moscovitch M (2008b) The parietal cortex and episodic memory: an attentional account. Nature reviews Neuroscience 9:613-625.
Chambers CD, Payne JM, Stokes MG, Mattingley JB (2004) Fast and slow parietal pathways mediate spatial attention. Nat Neurosci 7:217-218.
Ciaramelli E, Grady CL, Moscovitch M (2008) Top-down and bottom-up attention to memory: A hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia 46:1828-1851.
Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3d Intersubject Registration of Mr Volumetric Data in Standardized Talairach Space. J Comput Assist Tomo 18:192-205.
Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: From environment to theory of mind. Neuron 58:306-324.
Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience 3:201-215.
Desgranges B, Baron JC, Eustache F (1998) The functional neuroanatomy of episodic memory: The role of the frontal lobes, the hippocampal formation, and other areas. Neuroimage 8:198-213.
Desseilles M, Balteau E, Sterpenich V, Dang-Vu TT, Darsaud A, Vandewalle G, Albouy G, Salmon E, Peters F, Schmidt C, Schabus M, Gais S, Degueldre C, Phillips C, Luxen A, Ansseau M, Maquet P, Schwartz S (2009) Abnormal Neural Filtering of Irrelevant Visual Information in Depression. Journal of Neuroscience 29:1395-1403.
Ditterich J, Mazurek ME, Shadlen MN (2003) Microstimulation of visual cortex affects the speed of perceptual decisions. Nat Neurosci 6:891-898.
Duerden EG, Albanese MC (2013) Localization of pain-related brain activation: a meta-analysis of neuroimaging data. Hum Brain Mapp 34:109-149.
Eccleston C, Crombez G (1999) Pain demands attention: A cognitive-affective model of the interruptive function of pain. Psychol Bull 125:356-366.
Filimon F, Philiastides MG, Nelson JD, Kloosterman NA, Heekeren HR (2013) How Embodied Is Perceptual Decision Making? Evidence for Separate Processing of Perceptual and Motor Decisions. Journal of Neuroscience 33:2121-2136.
Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995) Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magnetic resonance in medicine 33:636-647.
Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems (vol 103, pg 10046, 2006). Proceedings of the National Academy of Sciences of the United States of America 103:13560-13560.
Frackowiak KJFAPHKJWJ-PPCDFRSJ (1995) Statistical Parametric Maps in Functional Imaging: A General Linear Approach Hum Brain Mapp 2:189-210.
Friston KJ, Holmes AP, Worsley KJ (1999) How many subjects constitute a study? Neuroimage 10:1-5.
Fruhstorfer H, Lindblom U, Schmidt WG (1976) Method for Quantitative Estimation of Thermal Thresholds in Patients. J Neurol Neurosur Ps 39:1071-1075.
G. G (1997) Psychophysics: the fundamentals (3rd ed.) Chapter 3: The Classical Psychophysical Methods: Lawrence Erlbaum Associates.
Gottlieb J (2007) From thought to action: The parietal cortex as a bridge between perception, action, and cognition. Neuron 53:9-16.
Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG (2004a) A general mechanism for perceptual decision-making in the human brain. Nature 431:859-862.
Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG (2004b) A general mechanism for perceptual decision-making in the human brain. Nature 431:859-862.
Heekeren HR, Marrett S, Ruff DA, Bandettini PA, Ungerleider LG (2006) Involvement of human left dorsolateral prefrontal cortex in perceptual decision making is independent of response modality. Proceedings of the National Academy of Sciences of the United States of America 103:10023-10028.
Heekeren HR, Marrett S, Ungerleider LG (2008) The neural systems that mediate human perceptual decision making. Nature Reviews Neuroscience 9:467-479.
Ho TC, Brown S, Serences JT (2009) Domain General Mechanisms of Perceptual Decision Making in Human Cortex. Journal of Neuroscience 29:8675-8687.
Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R (2002) Image distortion correction in fMRI: A quantitative evaluation. Neuroimage 16:217-240.
Kalin S, Rausch-Osthoff AK, Bauer CM (2016) What is the effect of sensory discrimination training on chronic low back pain? A systematic review. Bmc Musculoskel Dis 17.
Katsuki F, Constantinidis C (2014) Bottom-up and top-down attention: different processes and overlapping neural systems. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 20:509-521.
Kayser AS, Buchsbaum BR, Erickson DT, D'Esposito M (2010) The Functional Anatomy of a Perceptual Decision in the Human Brain. J Neurophysiol 103:1179-1194.
Kelly SP, O'connell RG (2015) The neural processes underlying perceptual decision making in humans: Recent progress and future directions. J Physiol-Paris 109:27-37.
Kent C, Guest D, Adelman JS, Lamberts K (2014) Stochastic accumulation of feature information in perception and memory. Frontiers in psychology 5:412.
Kong J, White NS, Kwong KK, Vangel MG, Rosman IS, Gracely RH, Gollub RL (2006) Using fMRI to dissociate sensory encoding from cognitive evaluation of heat pain intensity. Hum Brain Mapp 27:715-721.
Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT (2009) Investigating the Functional Heterogeneity of the Default Mode Network Using Coordinate-Based Meta-Analytic Modeling. Journal of Neuroscience 29:14496-14505.
Levy R, Goldman-Rakic PS (2000) Segregation of working memory functions within the dorsolateral prefrontal cortex. Exp Brain Res 133:23-32.
Li W, Qin W, Liu HG, Fan LZ, Wang JJ, Jiang TZ, Yu CS (2013) Subregions of the human superior frontal gyrus and their connections. Neuroimage 78:46-58.
Liu TS, Pleskac TJ (2011) Neural correlates of evidence accumulation in a perceptual decision task. J Neurophysiol 106:2383-2398.
Lotsch J, Walter C, Felden L, Preibisch C, Noth U, Martin T, Anti S, Deichmann R, Oertel BG (2012) Extended cortical activations during evaluating successive pain stimuli. Soc Cogn Affect Neur 7:698-707.
McCracken LM (1997) 'Attention' to pain in persons with chronic pain: A behavioral approach. Behav Ther 28:271-284.
McNeil DW, Rainwater AJ, 3rd (1998) Development of the Fear of Pain Questionnaire--III. Journal of behavioral medicine 21:389-410.
Meriau K, Wartenburger I, Kazzer P, Prehn K, Lammers CH, van der Meer E, Villringer A, Heekeren HR (2006) A neural network reflecting individual differences in cognitive processing of emotions during perceptual decision making. Neuroimage 33:1016-1027.
Moulton EA, Pendse G, Becerra LR, Borsook D (2012) BOLD Responses in Somatosensory Cortices Better Reflect Heat Sensation than Pain. Journal of Neuroscience 32:6024-6031.
Mulder MJ, van Maanen L, Forstmann BU (2014) Perceptual Decision Neurosciences - a Model-Based Review. Neuroscience 277:872-884.
Ohnhaus EE, Adler R (1975) Methodological problems in the measurement of pain: a comparison between the verbal rating scale and the visual analogue scale. Pain 1:379-384.
Oshiro Y, Quevedo AS, McHaffie JG, Kraft RA, Coghill RC (2007) Brain mechanisms supporting spatial discrimination of pain. The Journal of neuroscience : the official journal of the Society for Neuroscience 27:3388-3394.
Oshiro Y, Quevedo AS, McHaffie JG, Kraft RA, Coghill RC (2009) Brain Mechanisms Supporting Discrimination of Sensory Features of Pain: A New Model. Journal of Neuroscience 29:14924-14931.
Owen AM (1997) The functional organization of working memory processes within human lateral frontal cortex: The contribution of functional neuroimaging. Eur J Neurosci 9:1329-1339.
Owen AM, Evans AC, Petrides M (1996) Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study. Cereb Cortex 6:31-38.
Owen AM, Stern CE, Look RB, Tracey I, Rosen BR, Petrides M (1998) Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proceedings of the National Academy of Sciences of the United States of America 95:7721-7726.
Oztekin I, McElree B, Staresina BP, Davachi L (2009) Working Memory Retrieval: Contributions of the Left Prefrontal Cortex, the Left Posterior Parietal Cortex, and the Hippocampus. J Cognitive Neurosci 21:581-593.
Pasternak T, Greenlee MW (2005) Working memory in primate sensory systems. Nature reviews Neuroscience 6:97-107.
Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiologie clinique = Clinical neurophysiology 30:263-288.
Philiastides MG, Auksztulewicz R, Heekeren HR, Blankenburg F (2011) Causal Role of Dorsolateral Prefrontal Cortex in Human Perceptual Decision Making. Current Biology 21:980-983.
Poppenk J, McIntosh AR, Craik FIM, Moscovitch M (2010) Past Experience Modulates the Neural Mechanisms of Episodic Memory Formation. Journal of Neuroscience 30:4707-4716.
Preston AR, Bornstein AM, Hutchinson JB, Gaare ME, Glover GH, Wagner AD (2010) High-resolution fMRI of Content-sensitive Subsequent Memory Responses in Human Medial Temporal Lobe. J Cognitive Neurosci 22:156-173.
Reiss S, Peterson RA, Gursky DM, McNally RJ (1986) Anxiety sensitivity, anxiety frequency and the prediction of fearfulness. Behaviour research and therapy 24:1-8.
Robertson LC (2003) Binding, spatial attention and perceptual awareness. Nature reviews Neuroscience 4:93-102.
Romo R, Salinas E (2003) Flutter discrimination: neural codes, perception, memory and decision making. Nature reviews Neuroscience 4:203-218.
Salinas E, Hernandez A, Zainos A, Romo R (2000) Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. Journal of Neuroscience 20:5503-5515.
Salzman CD, Britten KH, Newsome WT (1990) Cortical Microstimulation Influences Perceptual Judgments of Motion Direction. Nature 346:174-177.
Sanchez CA (2011) Working through the pain: Working memory capacity and differences in processing and storage under pain. Memory 19:226-232.
Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 19:43-61.
Shadlen MN, Britten KH, Newsome WT, Movshon JA (1996) A computational analysis of the relationship between neuronal and behavioral responses to visual motion. Journal of Neuroscience 16:1486-1510.
Spaniol J, Davidson PSR, Kim ASN, Han H, Moscovitch M, Grady CL (2009) Event-related fMRI studies of episodic encoding and retrieval: Meta-analyses using activation likelihood estimation. Neuropsychologia 47:1765-1779.
Speck O, Ernst T, Braun J, Koch C, Miller E, Chang L (2000) Gender differences in the functional organization of the brain for working memory. Neuroreport 11:2581-2585.
Spielberger CD, Gorsuch RL, Lushene PR, Vagg PR, Jacobs GA (1983) Manual for the State-Trait Anxiety Inventory: Consulting Psychologists Press, Inc.
Spitzer H, Desimone R, Moran J (1988) Increased Attention Enhances Both Behavioral and Neuronal Performance. Science 240:338-340.
Spreng RN, Mar RA, Kim ASN (2009) The Common Neural Basis of Autobiographical Memory, Prospection, Navigation, Theory of Mind, and the Default Mode: A Quantitative Meta-analysis. J Cognitive Neurosci 21:489-510.
Sullivan MJL, Bishop SR, Pivik J (1995) The Pain Catastrophizing Scale: Development and validation. Psychol Assessment 7:524-532.
Taylor PCJ, Muggleton NG, Kalla R, Walsh V, Eimer M (2011) TMS of the right angular gyrus modulates priming of pop-out in visual search: combined TMS-ERP evidence. J Neurophysiol 106:3001-3009.
Tracey I, Mantyh PW (2007) The cerebral signature and its modulation for pain perception. Neuron 55:377-391.
Tregellas JR, Davalos DB, Rojas DC (2006) Effect of task difficulty on the functional anatomy of temporal processing. Neuroimage 32:307-315.
Tseng MT, Chiang MC, Yazhuo K, Chao CC, Tseng WY, Hsieh ST (2013) Effect of aging on the cerebral processing of thermal pain in the human brain. Pain 154:2120-2129.
Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nature reviews Neuroscience 16:55-61.
Vilberg KL, Rugg MD (2008) Memory retrieval and the parietal cortex: A review of evidence from a dual-process perspective. Neuropsychologia 46:1787-1799.
Wiech K, Seymour B, Kalisch R, Stephan KE, Koltzenburg M, Driver J, Dolan RJ (2005) Modulation of pain processing in hyperalgesia by cognitive demand. Neuroimage 27:59-69.
Wiech K, Tracey I (2013) Pain, decisions, and actions: a motivational perspective. Front Neurosci-Switz 7.
Wiech K, Vandekerckhove J, Zaman J, Tuerlinckx F, Vlaeyen JW, Tracey I (2014) Influence of prior information on pain involves biased perceptual decision-making. Current biology : CB 24:R679-681.
Yonelinas AP (2013) The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behav Brain Res 254:34-44.
Zaman J, Vlaeyen JWS, Van Oudenhove L, Wiech K, Van Diest I (2015) Associative fear learning and perceptual discrimination: A perceptual pathway in the development of chronic pain. Neurosci Biobehav R 51:118-125.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49516-
dc.description.abstract為了適應外界環境刺激的迅速變化,分辨痛覺強度的能力對於正常人來說是至關重要的功能。過去的研究證據顯示異常的認知功能(包含決策歷程)可能與慢性疼痛 (Chronic pain) 的致病機制相關。然而迄今為止,大腦分辨疼痛強度的複雜神經機制仍舊尚未明朗,過去的相關研究結果也不一致。本研究的目的在於探索執行電痛 (electrical pain) 刺激相關的決策時,腦部所參與的特定神經基質。在本研究中,我們招募了二十二位年輕的健康受試者,並使用功能性磁振造影作為腦部功能性活動的成像工具。掃描的期間,受試者需要分辨兩個連續刺激的強度,或者判斷一個刺激是否會疼痛。影像資料的分析結果顯示,受試者分辨疼痛時引起了角迴(angular gyrus)、額下迴(inferior frontal gyrus)、額中迴(middle frontal gyrus) 和頂下小葉 (inferior parietal lobule) 的神經活動。另外在個別的試驗中,我們發現額上迴(superior frontal gyrus) 的神經活化與前後兩刺激的相對強度差異有關。更重要的是,相較於分辨非疼痛刺激,分辨疼痛強度時大腦的額上迴和角迴之間有顯著較強的功能性連結。此外,角迴和疼痛處理相關區域,包含初級體感覺皮質 (primary somatosensory cortex)、次級體感覺皮質 (secondary somatosensory cortex)、前扣帶迴皮質 (anterior cingulate cortex) 和腦島皮質 (insular cortex) 之間,在分辨疼痛時有額外的功能性互動。這些結果不僅補足了疼痛認知調節的神經基礎,也顯示額頂葉網絡 (fronto-parietal network) 與大腦痛覺區域之間的交互作用,參與了人類分辨疼痛刺激強度的歷程。zh_TW
dc.description.abstractTo discriminate the intensity of painful stimuli is essential to healthy survival. Evidence suggests that aberrant cognitive operations of pain, including the decision process, underlie the pathogenesis of chronic pain. However, neural mechanisms related to the discrimination of pain intensity in healthy humans remain unclear. The current study aims to investigate pain-specific neural substrates during the decision process of electrical pain. Twenty-two young healthy adults participated in this functional magnetic resonance imaging (fMRI) study. During scanning, subjects were required to either discriminate the intensity of two sequentially applied stimuli or categorize a stimulus as painful or not painful. Behavioral results indicated that subjects adopted different strategies during discrimination and categorization. Functional imaging data revealed that pain discrimination entailed the response in the angular gyrus (AG), inferior and middle frontal gyri, and inferior parietal lobule. Activity in the superior frontal gyrus (SFG) was parametrically modulated by the difference in pain intensity of the two sequential stimuli on a trial-by-trial basis. Importantly, compared with the discrimination of innocuous stimuli, the functional connectivity between SFG and AG was enhanced during pain discrimination. Moreover, AG was functionally linked with pain-processing regions – the primary somatosensory cortex – during pain discrimination. These findings complement the neural basis underlying the cognitive modulation on pain and suggest that discrimination of pain intensity engages an interaction between fronto-parietal networks and cerebral nociceptive centers.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:32:30Z (GMT). No. of bitstreams: 1
ntu-105-R03454014-1.pdf: 1449367 bytes, checksum: 2c7886deffb9f751565c459206639b71 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
INTRODUCTION 1
METHODS 5
Subjects. 5
Stimuli. 5
Behavioral session. 6
Practice session. 7
Experimental paradigm. 7
Statistical analysis. 9
fMRI data acquisition. 10
fMRI data analysis. 10
Psychophysiological interaction (PPI) analysis. 13
RESULTS 15
Behavioral results 15
Pain-specific brain activations 17
Brain activations related to PD 17
Brain activations modulated by the difference in stimulus intensity during the discrimination of pain 18
Brain activations modulated by the stimulus intensity during categorization of pain 18
Functional linkage from brain regions modulated by the difference in pain intensity to regions related to pain discrimination 19
Functional linkage from brain regions related to pain discrimination to pain-processing centers 20
DISCUSSION 21
IFG, MFG, and IPL 21
AG 22
SFG 23
Conclusions 24
REFERENCES 25
LIST OF FIGURES AND TABLES 35
Figures 36
Tables 45
dc.language.isoen
dc.subject電刺激zh_TW
dc.subject心理生理交互作用分析zh_TW
dc.subject功能性磁振造影zh_TW
dc.subject分辨zh_TW
dc.subject疼痛zh_TW
dc.subjectpsychophysiological interaction analysisen
dc.subjectpainen
dc.subjectdiscriminationen
dc.subjectelectrical stimulationen
dc.subjectfunctional magnetic resonance imagingen
dc.title疼痛知覺決策歷程之神經關聯:功能性磁振造影研究zh_TW
dc.titleNeural Correlates for the Perceptual Decision Making of Pain: an fMRI studyen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳恩賜,吳仕煒(Shih-Wei Wu)
dc.subject.keyword疼痛,電刺激,分辨,功能性磁振造影,心理生理交互作用分析,zh_TW
dc.subject.keywordpain,electrical stimulation,discrimination,functional magnetic resonance imaging,psychophysiological interaction analysis,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201602972
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept腦與心智科學研究所zh_TW
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved