請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49502
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
dc.contributor.author | Chun-Hsien Li | en |
dc.contributor.author | 黎俊賢 | zh_TW |
dc.date.accessioned | 2021-06-15T11:31:47Z | - |
dc.date.available | 2018-08-24 | |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-17 | |
dc.identifier.citation | [1]'Cell Therapy'. American Cancer Society. 1 November 2008. Retrieved 15 September 2013.
[2]1998 J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, J.M. Jones Embryonic stem cell lines derived from human blastocysts Science, 282 (1998), pp. 1145–1147 [3]2007, J. Yu, M.A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J.L. Frane, S. Tian, J. Nie, G.A. Jonsdottir, V. Ruotti, R. Stewart, I.I. Slukvin, J.A. Thomson. Induced pluripotent stem cell lines derived from human somatic cells Science, 318 (2007), pp. 1917–1920 [4]Dean M, Fojo T, Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer. 2005, 5: 275-284. 10.1038/nrc1590 [5]Rosenberg S.A., Yang J.C., Restifo N.P. Cancer immunotherapy: moving beyond current vaccines. Nat. Med.2004;10:909–915. [6]Coley, W. The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. (1910); 3(Surg Sect): 1–48. [7]Wolchok, J.D., T.A. Chen. Cancer: Antitumour immunity gets a boost. Nature (2014) 515, 496–498 [8]Gubin, M. M., X. Zhang, H. Schuster, E. Caron, J. P. Ward, T. Noguchi, Y. Ivanova, J. Hundal, C. D. Arthur, W.-J. Krebber, G. E. Mulder, M.Toebes, M. D. Vesely, S. S. K. Lam, A. J. Korman, J. P. Allison, G. J. Freeman, A.H. Sharpe,E. L. Pearce, T. N. Schumacher, R. Aebersold, H.-G. Rammensee, C. J. M. Melief, E. R. Mardis, W. E. Gillanders, M. N. Artyomov & R.D. Schreiber. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature (2014) 515, 577–581 [9]George, Medicineworld.org: Careful cleaning of children's skin wounds key to healing, Johns Hopkins Med., Frbruary 2011. [10]Kheir, E., Stapleton, T., Shaw, D., Jin, Z., Fisher, J., & Ingham, E. (2011). Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. Journal of biomedical materials research Part A,99(2), 283-294. [11]N.R. Hedge, S.V. Kaveri, J. Bayry, Recent advances in the administration of vaccines for infectious diseases: microneedles as painless delivery devices for mass vaccination, Drug Discov. Today 16 (2011) 1061–1068. [12]J.C. Birchall,Microneedle array technology: the time is right but is the science ready? Expert Rev. Med. Devices 3 (2006) 1–4. [13]E.L. Giudice, J.D. Campbell, Needle-free vaccine delivery, Adv. Drug Deliv. Rev. 58 (2006) 68–89. [14]M.R. Prausnitz, R. Langer, Transdermal drug delivery, Nat. Biotechnol. 26 (2008) 1261–1268. [15]Bariya, S.H., Gohel, M.C., Mehta, T.A., Sharma, O.P., 2012. Microneedles: an emerging transdermal drug delivery system. J. Pharm. Pharmacol. 64, 11–29. [16]Martanto, W., Davis, S.P., Holiday, N.R., Wang, J., Gill, H.S., Prausnitz, M.R., 2004. Transdermal delivery of insulin using microneedles in vivo. Pharm. Res. 21, 947–952. [17]G. Traverso, C.M. Schoellhammer, A. Schroeder, R. Maa, G.Y. Lauwers, B.E. Polat, D.G. Anderson, D. Blankschtein, R. Langer, Microneedles for drug delivery via the gastrointestinal tract, J. Pharm. Sci. 104 (2015) 362–367. [18] Gill, H.S., Denson, D.D., Burris, B.A., Prausnitz, M.R., 2008. Effect of microneedle design on pain in human volunteers. Clin. J. Pain 24, 585–594. [19]Mikolajewska, P., Donnelly, R.F., Garland, M.J., Morrow, D.I.J., Singh, T.R.R., Iani, V., Moan, J., Juzeniene, A., 2010. Microneedle pre-treatment of human skin improves 5-aminolevulininc acid (ALA)- and 5-aminolevulinic acid methyl ester (MAL)-induced PpIX production for topical photodynamic therapy without increase in pain or erythema. Pharm. Res. 27, 2213–2220. [20]M.R. Prausnitz, Microneedles for transdermal drug delivery, Adv. Drug Deliv. Rev. 56 (2004) 581–587. [21]V. Sachdeva, A.K. Banga,Microneedles and their applications, Recent Pat. Drug Deliv.Formul. 5 (2011) 95–132. [22]H.S. Gill, D.D. Denson, B.A. Burris, M.R. Prausnitz, Effect of microneedle design on pain in human volunteers, Clin. J. Pain 24 (2008) 585–594. [23]M.I. Haq, E. Smith, D.N. John, M. Kalavala, C. Edwards, A. Anstey, A. Morrissey, J.C. Birchall, Clinical administration of microneedles: skin puncture, pain and sensation, Biomed. Microdevices 11 (2009) 35–47. [24]X. Chen, T.W. Prow,M.L. Crichton, D.W.K. Jenkins,M.S. Roberts, I.H. Frazer, G.J.P. Fernando, M.A.F. Kendall, Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin, J. Control. Release 139 (2009) 212–220. [25]S. Indermun, R. Luttge, Y.E. Choonara, P. Kumar, L.C. du Toit, G. Modi, V. Pillay Current advances in the fabrication of microneedles for transdermal delivery J. Control. Release, 185 (2014), pp. 130–138 [26]Donnelly, R.F., Singh, T.R.R., Garland, M.J., Migalska K., Majithiya R., McCrudden C. M., Kole P. L., Mahmood T. M. T., McCarthy H. O., Woolfson A. D., 2012. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater. 22 (23), 4879–4890 [27]T. Gratieri, I. Alberti, M. Lapteva, Y.N. Kalia, Next generation intra-and transdermal therapeutic systems: using non- and minimally-invasive technologies to increasedrug delivery into and across the skin, Eur. J. Pharm. Sci. 50 (2013) 609–622. [28]Harper, Charles A., Edward M. Petrie. Plastics Materials and Processes John Wiley & Sons, 2003 [29]Harper, Charles A., Handbook of Plastic Processes, John Wiley & Sons, 2005 [30]Ranamukhaarachchi, S. A., Schneider, T., Lehnert, S., Sprenger, L., Campbell, J. R., Mansoor, I., Jacqueline C. Y. Lai, Kimit R., Jan Dutz, U. O. Hafeli & Stoeber, B. (2015). Development and Validation of an Artificial Mechanical Skin Model for the Study of Interactions between Skin and Microneedles. Macromolecular Materials and Engineering. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49502 | - |
dc.description.abstract | 細胞療法是在體外無菌環境下培養細胞後,將細胞取下並且傳遞到體內,恢復受損或缺失的細胞及組織以達到療效。過去研究中是以注射方式將細胞傳遞到體內,然而注射的方式會有幾個缺點,像是會造成患者疼痛感、感染風險、注射時必須由受過訓練人員操作、出血及形成血腫的可能性及會造成細胞迅速擴散,生物利用率低等。因此在本研究中,我們利用近期相當流行的微針陣列當作細胞的傳遞載體,其較小的尺寸,使皮下傷口較小,並且不會觸及皮下神經可以減輕患者疼痛感、不需要透過訓練人員協助操作、不易造成出血及降低感染風險等優點。此外,使用聚甲基丙烯酸甲酯作為微針的材料,其具有良好的機械強度、極佳的生物相容性、性能穩定耐用且價格相當低廉。因此本研究期望使用聚甲基丙烯酸甲酯製成的微針陣列用來傳遞細胞至皮下,以恢復患者缺失或受損的細胞。
在本研究中,使用聚二甲基矽氧烷製成的微針模具來製作聚甲基丙烯酸甲酯微針陣列。利用MTT assay觀察細胞的存活率以做材料的生物相容性評估。利用Live/Dead Staining觀察細胞在微針陣列上的貼附及增生情況,及利用電子顯微鏡觀察材料的表面結構及細胞貼附情形。利用膠原蛋白、海藻酸鈉及去細胞的新生鼠皮膚作為細胞轉移的材料,來確認細胞是否會成功從微針陣列上轉移至他處。 結果顯示聚甲基丙烯酸甲酯微針陣列具有良好的生物相容性,且細胞可以在其上貼附及增生。另外,培養在微針上的細胞也可以成功轉移至膠原蛋白、海藻酸鈉及去細胞的新生鼠皮膚中。因此,微針陣列搭配細胞療法是一個新穎且極具潛力的治療方式。 | zh_TW |
dc.description.abstract | Cell therapy is a kind of treatment method that delivers cells which are cultured in vitro into the human body in order to recover missing or damaged cells. In the past, cells are delivered by injection, but this way may make patients painful, have the possibility for patients to get infected, need trained personnel to operate and have the possibility of forming hematoma or bleeding. In this study, we used microneedle array as a carrier for cells delivering. With its small size, the subcutaneous wound is smaller and it will not touch nerves under the skin, so improvement of patients’ comfort can be easily achieved. Besides, using microneedle array will not require trained personnel to assist operating. Finally, it will reduce the risk of infection and hematoma formation. We used polymethyl-methacrylate (PMMA) as the material for fabricating microneedle array due to its adequate mechanical strength, excellent biocompatibility, stability and lower price. We are looking forward to using microneedle array made of PMMA to act as a carrier for cells delivering in order to treat missing or damaged cells in the human body.
In this study, we used polydimethylsiloxane(PDMS) mold for fabricating PMMA microneedle array. Biocompatibility and cell viability were evaluated by MTT assay. Cell adhesion and proliferation on microneedle array were examined by Live/Dead Staining and SEM. Moreover, we used collagen, alginate and acellular skin as a delivered material to observe whether the cells can deliver from microneedle array to another place. The results show that PMMA microneedle array has good biocompatibility and cells can attach and grow on it. Besides, cells on the microneedle array can successfully deliver to collagen, alginate and acellular skin. Therefore, microneedle array with cell therapy is a new and highly potential treatment method. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:31:47Z (GMT). No. of bitstreams: 1 ntu-105-R03548009-1.pdf: 1945132 bytes, checksum: 26af302b395ff0bdd225821139898f26 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 1 摘要 2 Abstrate 3 目錄 4 Chapter 1 序論 9 1.1前言 9 1.2細胞療法 9 1.2.1幹細胞治療(Stem-cell therapy) 10 1.2.2免疫細胞療法(Immunotherapy) 10 1.3皮膚的生理構造 11 1.4去細胞化(Decellularization) 12 1.5微針陣列(Microneedle Array) 13 1.6聚甲基丙烯酸甲酯 (Poly(methyl methacrylate))16 Chapter 2 研究目的 19 Chapter 3 實驗材料與方法 20 3.1實驗藥品 20 3.2實驗儀器 21 3.3微針的製備 22 3.3.1聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)微針模具 22 3.3.2聚甲基丙烯酸甲酯(Poly-Methyl methacrylate, PMMA)微針 22 3.4細胞培養液配置 23 3.5MTT Assay細胞存活率分析 24 3.5.1實驗原理 24 3.5.2MTT試劑配製 24 3.5.3實驗步驟 24 3.6細胞轉移材料 25 3.6.1海藻酸鈉 (Sodium Alginate) 製備 25 3.6.2膠原蛋白(Collagen)的製備 25 3.6.3皮膚去細胞 25 3.7細胞貼附及增生觀察 26 3.7.1Live/Dead Staining細胞存活染色 26 3.7.2實驗步驟 26 3.8SEM觀察微針表面結構與細胞貼附情形 27 3.9微針陣列壓應力測試 27 3.10裸鼠表皮按壓 28 3.11細胞傳遞至去細胞化表皮 28 Chapter 4 結果與討論 29 4.1MTT Assay細胞存活率分析 29 4.1.1實驗設置 29 4.1.2細胞存活率分析 29 4.1.3殘餘溶劑毒性測試 30 4.2針上細胞貼附觀察 31 4.3SEM觀察微針表面結構與細胞貼附情形 32 4.3.1聚甲基丙烯酸甲酯微針陣列微結構 32 4.3.2微針陣列細胞攀附情形 34 4.3.3微針陣列針面朝下 34 4.4細胞傳遞 35 4.4.1實驗設置 35 4.4.2細胞轉移率 35 4.4.3海藻酸鈉 (Sodium Algiante) 36 4.4.4膠原蛋白 (Collagen) 37 4.5微針陣列壓應力測試 38 4.6裸鼠表皮按壓 39 4.6.1裸鼠表皮 39 4.6.2壓過表皮後的微針 40 4.7細胞傳遞至去細胞化表皮 41 4.8細胞傳遞至裸鼠表皮 42 Chapter 5 總結 43 REFERENCE 44 | |
dc.language.iso | zh-TW | |
dc.title | 以聚甲基丙烯酸甲酯之微針陣列進行細胞傳遞研究 | zh_TW |
dc.title | The Application of polymethylmethacrylate Microneedle Array for Cells Delivery | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許馨云,黃意真 | |
dc.subject.keyword | 微針陣列,細胞療法,聚甲基丙烯酸甲酯, | zh_TW |
dc.subject.keyword | microneedle array,cell therapy,polymethyl-methacrylate, | en |
dc.relation.page | 47 | |
dc.identifier.doi | 10.6342/NTU201602176 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 1.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。