Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49498
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏宏宇(Hung-Yu Wei)
dc.contributor.authorCheng-Chih Chaoen
dc.contributor.author趙正直zh_TW
dc.date.accessioned2021-06-15T11:31:35Z-
dc.date.available2020-08-20
dc.date.copyright2020-08-20
dc.date.issued2020
dc.date.submitted2020-08-12
dc.identifier.citation[1] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman. In-band full-duplex wireless: Challenges and opportunities. IEEE J. Sel. Areas Commun., 32(9):1637–1652, Sep. 2014.
[2] K. Lin, R. H. Messerian, and Yuanxun Wang. A digital leakage cancellation scheme for monostatic FMCW radar. In Proc. IEEE MTT-S International Microwave Symposium Digest, volume 2, pages 747–750 Vol.2, Jun. 2004.
[3] W. T. Slingsby and J. P. McGeehan. Antenna isolation measurements for onfrequency radio repeaters. In Proc. International Conference on Antennas and Propagation, volume 1, pages 239–243 vol.1, Aug. 1995.
[4] S. J. Kim, J. Y. Lee, J. C. Lee, J. H. Kim, B. Lee, and N. Y. Kim. Adaptive feedback interference cancellation system. In Proc. IEEE MTT-S International Microwave Symposium Digest, volume 1, pages 627–630 vol.1, Jul. 2003.
[5] H. Suzuki, K. Itoh, Y. Ebine, and M. Sato. A booster configuration with adaptive reduction of transmitter-receiver antenna coupling for pager systems. In Proc. IEEE Vehicular Technology Conference, volume 3, pages 1516–1520 vol.3, Sep. 1999.
[6] T. Riihonen, S. Werner, and R. Wichman. Mitigation of loopback self-interference in full-duplex mimo relays. IEEE Trans. Signal Process., 59(12):5983–5993, Aug. 2011.
[7] J.I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti. Achieving single channel, full duplex wireless communications. In Proc. ACM MobiCom, pages 1–12, Sep. 2010.
[8] E. Everett, A. Sahai, and A. Sabharwal. Passive self-interference suppression for full-duplex infrastructure nodes. IEEE Trans. Wireless Commun., 13(2):680–694, Feb. 2014.
[9] D. Bharadia, E. McMilin, and S. Katti. Full-duplex radio. In Proc. ACM SIGCOMM, pages 375–386, Sep. 2013.
[10] N. Nisan, T. Roughgarden, and V. V. Vazirani. Algorithmic Game Theory. Cambridge University Press, 2007.
[11] C. Chao, C. Wang, C. Lee, H. Wei, and W. Chen. Pair auction and matching for resource allocation in full-duplex cellular systems. IEEE Trans. Veh. Technol., 69(4): 4325–4339, Apr. 2020.
[12] A. Mochon and Y. Saez. Understanding Auctions. Springer, 2015.
[13] C. Nam, C. Joo, and S. Bahk. Joint subcarrier assignment and power allocation in full-duplex OFDMA networks. IEEE Trans. Wireless Commun., 14(6):3108–3119, Jun. 2015.
[14] B. Di, S. Bayat, L. Song, and Y. Li. Radio resource allocation for full-duplex ofdma networks using matching theory. In Proc. IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages 197–198, April 2014.
[15] M. Al-Imari, M. Ghoraishi, and Pei Xiao. Radio resource allocation for full-duplex multicarrier wireless systems. In Proc. 2015 International Symposium on Wireless Communication Systems (ISWCS), pages 571–575, Aug. 2015.
[16] P. Tehrani, F. Lahouti, and M. Zorzi. Resource allocation in ofdma networks with half-duplex and imperfect full-duplex users. In Proc. IEEE International Conference on Communications (ICC), pages 1–6, May 2016.
[17] S. Xiao, S. Guo, X. Zhou, D. Feng, Y.-W. Yi, G. Y. Li, and W. Guo. Joint uplink and downlink resource allocation in full-duplex OFDMA networks. In Proc. IEEE International Conference on Communications (ICC), pages 1–6, May 2016.
[18] Y. You, C. Qin, and Y. Gong. Resource allocation for a full-duplex base station aided ofdma system. In Proc. IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pages 1–4, Jul. 2017.
[19] S. Lee, M. Yang, T. W. Kim, and D. K. Kim. Low complexity user pairing algorithm for in-band full-duplex networks with power control. In Proc. Asia-Pacific Conference on Communications (APCC), pages 1–5, Dec. 2017.
[20] B. Di, S. Bayat, L. Song, Y. Li, and Z. Han. Joint user pairing, subchannel, and power allocation in full-duplex multi-user ofdma networks. IEEE Trans. Wireless Commun., 15(12):8260–8272, Dec. 2016.
[21] P. Annamalai, J. Bapat, and D. Das. A novel frequency allocation scheme for in band full duplex systems in 5g networks. IEEE Wireless Commun. Lett., 8(2):364–367, Apr. 2019.
[22] C. Nam, C. Joo, S. Yoon, and S. Bahk. Resource allocation in full-duplex ofdma networks: Approaches for full and limited csis. Journal of Communications and Networks, 18(6):913–925, Dec. 2016.
[23] E. Park, J. Bae, H. Ju, and Y. Han. Resource allocation for full-duplex systems with imperfect co-channel interference estimation. IEEE Trans. Wireless Commun., 18(4):2388–2400, Apr. 2019.
[24] R. Aslani, M. Rasti, and A. Khalili. Energy efficiency maximization via joint subcarrier assignment and power control for ofdma full duplex networks. IEEE Trans. Veh. Technol., 68(12):11859–11872, Dec. 2019.
[25] M. Al-Imari, M. Ghoraishi, P. Xiao, and R. Tafazolli. Game theory based radio resource allocation for full-duplex systems. In Proc. IEEE Vehicular Technology Conference (VTC Spring), pages 1–5, May 2015.
[26] H. Fawaz, K. Khawam, S. Lahoud, and M. El Helou. A game theoretic framework for power allocation in full-duplex wireless networks. IEEE Access, 7:174013–174027, Dec. 2019.
[27] H. Fawaz, K. Khawam, S. Lahoud, and M. El Helou. A game theoretic approach for power allocation in full duplex wireless networks. In Proc. International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pages 1–7, Sep. 2019.
[28] L. Song, Y. Li, and Z. Han. Game-theoretic resource allocation for full-duplex communications. IEEE Wireless Commun., 23(3):50–56, Jun. 2016.
[29] F. Zeng, Q. Li, Z. Xiao, V. Havyarimana, and J. Bai. A price-based optimization strategy of power control and resource allocation in full-duplex heterogeneous macrocell-femtocell networks. IEEE Access, 6:42004–42013, Jul. 2018.
[30] S. Sekander, H. Tabassum, and E. Hossain. Decoupled uplink-downlink user association in multi-tier full-duplex cellular networks: A two-sided matching game. IEEE Trans. Mobile Comput., 16(10):2778–2791, Oct. 2017.
[31] C. Dai, K. Zhu, R. Wang, and Y. Xu. Decoupled multiple association in full-duplex ultra-dense networks: An evolutionary game approach. In Proc. IEEE International Conference on Communications (ICC), pages 1–6, May 2019.
[32] H. Chour, Y. Nasser, F. Bader, and O. Bazzi. Game-theoretic based power allocation for a full duplex d2d network. In Proc. International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pages 1–7, Sep. 2019.
[33] Y. Wang, Y. Niu, H. Wu, Z. Han, B. Ai, and Q. Wang. Sub-channel allocation for device-to-device underlaying full-duplex mmwave small cells using coalition formation games. IEEE Trans. Veh. Technol., 68(12):11915–11927, Oct. 2019.
[34] H. Jiang, Y. Niu, J. Zhang, B. Ai, and Z. Zhong. Coalition game based full-duplex concurrent scheduling in millimeter wave wireless backhaul network. China Communications, 16(2):59–75, Feb. 2019.
[35] W. Afifi, M. J. Abdel-Rahman, M. Krunz, and Allen B. MacKenzie. Full-duplex or half-duplex: A Bayesian game for wireless networks with heterogeneous selfinterference cancellation capabilities. IEEE Trans. Mobile Comput., 17(5):1076–1089, May 2018.
[36] A. Munari, V. G. Douros, and P. Mahonen. Mixed Nash equilibria for in-band fullduplex networks. IEEE Wireless Commun. Lett., 7:502–505, Aug. 2018.
[37] P. Semasinghe, E. Hossain, and S. Maghsudi. Cheat-proof distributed power control in full-duplex small cell networks: A repeated game with imperfect public monitoring. IEEE Trans. Commun., 66(4):1787–1802, Apr. 2018.
[38] G. Liu, F. R. Yu, H. Ji, and V. C. M. Leung. Virtual resource management in green cellular networks with shared full-duplex relaying and wireless virtualization: A game-based approach. IEEE Trans. Veh. Technol., 65(9):7529–7542, Sep. 2016.
[39] H. Stackelberg. Market Structure and Equilibrium. Springer, 2011.
[40] X. Tang, P. Ren, Y. Wang, and Z. Han. Combating full-duplex active eavesdropper: A hierarchical game perspective. IEEE Trans. Commun., 65(3):1379–1395, Mar. 2017.
[41] X. Tang, P. Ren, and Z. Han. Power-efficient secure transmission against full-duplex active eavesdropper: A game-theoretic framework. IEEE Access, 5:24632–24645, Oct 2017.
[42] X. Gao, P. Wang, D. Niyato, K. Yang, and J. An. Auction-based time scheduling for backscatter-aided RF-powered cognitive radio networks. IEEE Trans. Wireless Commun., 18(3):1684–1697, Mar. 2019.
[43] Z. Zheng, F. Wu, and G. Chen. A strategy-proof combinatorial heterogeneous channel auction framework in noncooperative wireless networks. IEEE Trans. Mobile Comput., 14(6):1123–1137, Jun. 2015.
[44] B. Di, S. Bayat, L. Song, and Y. Li. Radio resource allocation for full-duplex OFDMA networks using matching theory. In Proc. IEEE INFOCOM Workshops, pages 197–198, Apr. 2014.
[45] Z. Zhou, C. Gao, C. Xu, T. Chen, D. Zhang, and S. Mumtaz. Energy-efficient stable matching for resource allocation in energy harvesting-based device-to-device communications. IEEE Access, 5:15184–15196, Mar. 2017.
[46] Paul Anand. Foundations of Rational Choice Under Risk. Oxford University Press, 1993.
[47] Vijay Krishna. Auction Theory. Academic Press, 2002.
[48] A. Roth. The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge, 1988.
[49] Evolved universal terrestrial radio access (E-UTRA); physical layer procedures. 3GPP TS 36.213 V 15.3.0, Sep. 2018.
[50] Evolved universal terrestrial radio access (E-UTRA); medium access control (MAC) protocol specification. 3GPP TS 36.321 V 15.3.0, Sep. 2018.
[51] Atila Abdulkadiroglu and Tayfun Sonmez. House allocation with existing tenants. J. Econ., 88(2):233–260, 1999.
[52] C.-Y. Wang, G.-Y. Lin, C.-C. Chou, C.-W. Yeh, and H.-Y. Wei. Device-to-device communication in LTE-Advanced system: A strategy-proof resource exchange framework. IEEE Trans. Veh. Technol., 65(12):10022–10036, Dec. 2016.
[53] J. M. B. da Silva, G. Fodor, and C. Fischione. Spectral efficient and fair user pairing for full-duplex communication in cellular networks. IEEE Trans. Wireless Commun., 15(11):7578–7593, Nov. 2016.
[54] D. R. Bull. Communication Pictures. Academic Press, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49498-
dc.description.abstract由於使用者需求的增加,如何增進頻譜使用效率是次世代行動網路一個很重要的課題。在傳統的無線通訊系統中,上行和下行的使用者必須使用不同的無線資源來傳輸。而在全雙工技術下,上行和下行傳輸可以使用同一個無線資源,進而增進了蜂巢式網路的頻譜使用效率。然而,使用全雙工系統會產生自我干擾和內部節點干擾的問題。為了減少上述的干擾,使用者需要回報其對於干擾的測量值,讓基地台可以有效的分配資源以及配對上下行使用者。但由於對使用者來說,干擾的量測值為其私人訊息,使用者可能不會回報真實的干擾量測值且可能會藉此增進自己的利益。
在這篇論文中,我們提出了在全雙工系統下,確保誠實回報的資源分配方法。我們根據拍賣理論和配對理論所提出的方法,能確保使用者會誠實回報他們的通道品質和利益,從而確保回以資訊的正確性,以及確保資源分配的效率。此外,所提出的方法能透過理論證明其穩定性以及柏拉圖效率。模擬結果證實了我們所提出的方法,比一般不能確保誠實回報的集中式分配方法,多出了11% 的效能。
zh_TW
dc.description.abstractImproving spectral efficiency is a critical task for next-generation cellular systems to cope with the growing demand of users. In a traditional wireless communication system, the uplink and downlink users can only communicate with the base station on different resource blocks. The efficiency of such transmission can be improved by using full-duplex techniques at the BS, with the UL and DL transmissions performed simultaneously on the same radio resource. However, it causes self-interference and inter-node interference. To minimize self-interference and inter-node interference, users have to feed back their measurements of interference to allow the base station to effectively allocate resources and form transmission pairs. Considering that the interference measurements are private information, users may not report the true values and may try to gain their own benefits.
In this dissertation, we propose a strategy-proof resource allocation mechanism for full-duplex cellular networks. The proposed scheme is based on auction and matching theories. It guarantees that users report true values of their channel quality and utilities, and therefore guarantees the correctness of feedback information and the efficiency of resource allocation. Moreover, the proposed matching-based mechanism is theoretically proved to be stable and Pareto efficient. Simulation results confirm that, compared to a centralized scheme with non-truthful information from users, the proposed scheme can achieve an 11% gain.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:31:35Z (GMT). No. of bitstreams: 1
U0001-1208202014001800.pdf: 2842288 bytes, checksum: d64f0da8a95ee42cea18ffb84f672246 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
致謝 iii
中文摘要 v
Abstract vii
Contents ix
List of Figures xi
List of Tables xiii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Full duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Game theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Idea of the proposed scheme . . . . . . . . . . . . . . . . . . . . 12
2 Related Works 15
2.1 Resource Allocation in Full-duplex Cellular Networks . . . . . . . . . . 15
2.2 Game-theoretic Resource Allocation in Full-duplex Networks . . . . . . 17
2.2.1 Cellular Networks . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Heterogeneous Networks . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 D2D Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Other types of Networks . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 Auction in non-full-duplex networks . . . . . . . . . . . . . . . . 21
3 Pair Auction and Matching for Resource Allocation in Full-Duplex Cellular Systems 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1 Overview of the proposed resource allocation scheme in full-duplex cellular networks . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 User Paring and Resource Block Allocation . . . . . . . . . . . . . . . . 30
3.4 Scenario of Homogeneous Resource Blocks . . . . . . . . . . . . . . . . 32
3.4.1 User-Pairing Stage . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.2 Resource Block Allocation Stage . . . . . . . . . . . . . . . . . 37
3.4.3 Signaling Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Scenario of Heterogeneous Resource Blocks . . . . . . . . . . . . . . . . 45
4 Simulation 53
4.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.1 Scenario of Homogeneous Resource Blocks . . . . . . . . . . . . 54
4.1.2 Scenario of Heterogeneous Resource Blocks . . . . . . . . . . . 57
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5 Conclusions and Future Directions 63
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Bibliography 69
dc.language.isoen
dc.subject拍賣理論zh_TW
dc.subject無線通訊zh_TW
dc.subject全雙工zh_TW
dc.subject資源分配zh_TW
dc.subject賽局理論zh_TW
dc.subjectresource allocationen
dc.subjectauction theoryen
dc.subjectgame theoryen
dc.subjectwireless communicationen
dc.subjectfull duplexen
dc.title全雙工系統下策略防範資源分配機制設計zh_TW
dc.titleStrategy-proof Resource Allocation in Full-Duplex Cellular Systems
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee王志宇(Chih-Yu Wang),李佳翰(Chia-Han Lee),陳文村(Wen-Tsuen Chen),張仲儒(Chung-Ju Chang),林靖茹(Ching-Ju Lin)
dc.subject.keyword無線通訊,全雙工,資源分配,賽局理論,拍賣理論,zh_TW
dc.subject.keywordwireless communication,full duplex,resource allocation,game theory,auction theory,en
dc.relation.page75
dc.identifier.doi10.6342/NTU202003079
dc.rights.note有償授權
dc.date.accepted2020-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-1208202014001800.pdf
  未授權公開取用
2.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved