Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49472
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅敏輝
dc.contributor.authorHsin Hsuen
dc.contributor.author徐辛zh_TW
dc.date.accessioned2021-06-15T11:30:18Z-
dc.date.available2016-08-30
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citationAckerman, T., and Stokes, G. (2003), The Atmospheric Radiation Measurement program, Phys. Today, 56, 38–45.
Amante, C. and Eakins, B. W. (2009), Etopo1 1 arc-minute global relief model: Procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC, 24, 1–19.
Bartholomé, E. and Belward, A. S. (2005), GLC2000: a new approach to global land cover mapping from. Earth observation data, Int J Remote Sens., 26(9),1959–1977.
Cheng, W. Y. Y. and Cotton , W. R. (2004), Sensitivity of a cloud-resolving simulation of the genesis of a mesoscale convective system to horizontal heterogeneities in soil moisture initialization, J.Hydrometeorol., 5,934–958.
Dai, A. (2006), Precipitation characteristics in eighteen coupled climate models, J. Clim., 19, 4605–4630.
Dee, D. P. et al. (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.
Dirmeyer, P. A. (2011), The terrestrial segment of soil moisture–climate coupling, Geophysical Research Letters, 38(16), L16702.
D'Odorico, P. and Porporato, A. (2004), Preferential states in soil moisture and climate dynamics, Proc. Nat. Acad. Sci. USA., 101(24), 8848-8851.
Eltahir, E. A. B. and Bras, R. L. (1996), Precipitation recycling. Rev. Geophys., 34, 367–378.
Eltahir, E. A. B. (1998), A Soil Moisture–Rainfall Feedback Mechanism: 1. Theory and observations, Water Resour. Res., 34(4), 765–776.
Findell, K. L. and Eltahir, E. A. B. (1997), An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois, Water Resources Research, 33, 725-735.
Findell, K. L. and Eltahir, E. A. B. (2003), Atmospheric controls on soil moisture-boundary layer interactions. Part I: framework development, J. Hydrometeorol. 4, 552–569.
Guillod, B. P. et al. (2015), Reconciling spatial and temporal soil moisture effects on afternoon rainfall, Nat. Commun., 6.
Hohenegger, C., Brockhaus, P., Bretherton, C. S. and Schär, C. (2009), The soil moisture-precipitation feedback in simulations with explicit and parameterized convection, J. Clim., 22, 5003–5020.
Hsu, K.-l., Gao, X., Sorooshian, S. and Gupta, H. V. (1997), Precipitation estimation from remotely sensed information using artificial neural networks, J. Appl. Meteorol., 36, 1176–1190
Huffman, G. J. et al. (2007), The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55.
Hurrell, J. W., et al. (2013), The Community Earth System Model: A framework for collaborative research, Bull. Am. Meteorol. Soc., 94(9), 1339–1360.
Joyce, R. J., Janowiak, J. E., Arkin, P. A. and Xie, P. (2004), CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution, J. Hydrometeorol,. 5, 487–503.
Koster, R. D. et al. (2004), Regions of strong coupling between soil moisture and precipitation, Science, 305, 1138–1140.
Koster, R. D. et al. (2006), GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview, Journal of Hydrometeorology, 7(4), 590-610.
Miralles, D. G. et al. (2011), Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469.
Ookouchi, Y., Segal, M., Kessler, R. C. and Pielke, R. A. (1984), Evaluation of soil moisture effects on the generation and modification of mesoscale circulations, Mon. Weath. Rev., 112, 2281–2292.
Saha, S. et al, (2014), The NCEP Climate Forecast System Version 2 Journal of Climate J. Climate, 27, 185–2208.
Schär, C., Lüthi, D., and Beyerle, U., (1999), The Soil–Precipitation Feedback: A Process Study with a Regional Climate Model, J Clim, 12, 722-741.
Seneviratne, S. I. et al. (2010), Investigating soil moisture-climate interactions in a changing climate: a review, Earth-Sci. Rev., 99, 125–161.
Taylor, C. M. and Lebel, T. (1998), Observational evidence of persistent convective-scale rainfall patterns, Mon. Weather Rev., 126, 1597–1607.
Taylor, C. M. et al. (2011), Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns, Nature Geosci., 4, 430–433.
Taylor, C. M., de Jeu, R. A. M., Guichard, F., Harris, P. P. and Dorigo, W. A. (2012), Afternoon rain more likely over drier soils, Nature, 489, 423–426 .
Taylor, C. M. et al. (2013), Modeling soil moisture-precipitation feedback in the Sahel: Importance of spatial scale versus convective parameterization, Geophys. Res. Lett., 40, 6213–6218.
Trigo, I. F., Monteiro, I. T., Olesen, F. and Kabsch, E. (2008), An assessment of remotely sensed land surface temperature, J. Geophys. Res., 113, D17108.
Trigo, I.F., et al. (2011), The Satellite Application Facility on Land Surface Analysis. Int. J. Remote Sens., 32, 2725-2744.
Tuttle, S. and Salvucci, G. (2016), Empirical evidence of contrasting soil moisture-precipitation feedbacks across the United States, Science, 352, 825-828.
Wielicki, B. A. et al. (1996), Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. Am. Meteorol. Soc. 77, 853–868.
Yang, S. and Smith, E. A. (2008), Convective-stratiform precipitation variability at seasonal scale from 8 yr of trmm observations: implications for multiple modes of diurnal variability, J. Clim., 21, 4087–4114.
Zhou, Y., Wu, D., Lau, W., and Tao, W. (2016), Scale Dependence of Land Atmospheric Interactions in Wet and Dry Regions as Simulated with NU-WRF over Southwest and South-Central US, J. Hydrometeor.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49472-
dc.description.abstract水氣再循環與土壤水分-降雨之時空回饋皆是氣候系統中重要的議題。近年來的研究指出,土壤較濕且土壤水分異質性較高時較易出現降雨,而降雨位置則傾向發生在該地區相對較乾的土壤上。本研究藉由遙測資料,探討土壤水分之時空分布對潛在降雨位置的影響;以及降雨後,新的土壤水分分布在隔天早上是否有利對流發生。結果顯示,當土壤狀態較乾時,土壤水分-降雨之空間負回饋較強,且午後降雨傾向維持或提升土壤水分異質性,新的土壤水分空間分布則在隔天有利激發對流。另外,前人研究指出高異質性的土壤水分空間分佈與濕土壤皆對對流發展有利,本研究結果則顯示土壤水分異質性與土壤濕度,在影響降雨的位置所扮演的角色為競爭關係,這與過去對於土壤-降雨之時空回饋的觀念並不衝突,反而更完整的呈現土壤濕度、土壤空間異質性及降雨偏好發生的位置三者的關係。此外,我們提出了土壤水分分布影響降雨位置之可能的機制,該機制可用數值模式做進一步的探討,而若能使模式呈現如現實世界中土壤-降雨之關係亦有助於了解水氣再循環以及增進降雨預報。zh_TW
dc.description.abstractThe notions of moisture recycling and negative spatial soil moisture-precipitation coupling have recently been reconciled: rain tends to occur when conditions are wet and heterogeneous, but over locally relatively drier patches. This study focuses on the impacts of soil moisture spatiotemporal patterns on the preferential precipitation location and whether the subsequent soil moisture distribution on the next day's morning is advantageous to trigger another convection by using remote-sensing based datasets. Our results show that when soil conditions are dry, negative spatial coupling is stronger, and afternoon precipitation events tend to maintain or increase the soil moisture heterogeneity. This implies that the new soil moisture spatial distribution after the precipitation event might continue favoring convective triggering. In addition, both soil moisture heterogeneity and soil wetness condition jointly determine the position of precipitation. Strong soil moisture heterogeneity and wetter soil moisture both favor developing of convection, but they compete for the location of precipitation. Such responses in fact do not conflict with positive temporal coupling as indicated in previous studies and the mechanisms we proposed can be further investigated using numerical models. The observed relationship between soil moisture pattern and preferred precipitation location establishes new horizon of land-atmosphere interaction and have crucial implications for moisture recycling and precipitation predictions.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:30:18Z (GMT). No. of bitstreams: 1
ntu-105-R03229016-1.pdf: 3690664 bytes, checksum: ca3af840678b1f9c8128a9b31441132c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents謝誌 I
摘要 II
Abstract III
Contents IV
Table Captions V
Figure Captions VI
Chapter 1 Introduction 1
Chapter 2 Methodology 4
2.1 Datasets 4
2.2 Precipitation detection method 6
2.3 Soil moisture distribution 7
2.4 Distinction of the spatial coupling and the spatial effect 9
Chapter 3 Results 10
3.1 Spatial coupling 10
3.2 Persistence of soil moisture heterogeneity 11
3.3 Possible mechanisms to affect location of precipitation 12
3.4 Precipitation persistence 13
Chapter 4 Model Simulations 15
4.1 Setup and method 15
4.2 Results 17
Chapter 5 Conclusions 20
5.1 Summary 20
5.2 Future work 21
Appendix 26
Reference 30
Tables 34
Figures 35
Supplemental material 48
dc.language.isoen
dc.title土壤水分與降雨在時空耦合上之交互作用zh_TW
dc.titleInteractions between soil moisture and precipitation from the perspective of spatiotemporal couplingen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游政谷,陳維婷,黃彥婷,莊振義
dc.subject.keyword水氣再循環,負向空間耦合,對流,土壤水分異質性,土壤濕度,zh_TW
dc.subject.keywordmoisture recycling,negative spatial coupling,convection,soil moisture heterogeneity,soil wetness,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201602698
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved