Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49462
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周承復
dc.contributor.authorMing-Hung Chenen
dc.contributor.author陳銘宏zh_TW
dc.date.accessioned2021-06-15T11:29:49Z-
dc.date.available2016-08-30
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citation[1] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. Better never than late: meeting deadlines in datacenter networks. In Proceedings of the ACM SIGCOMM 2011 conference, SIGCOMM ’11, pages 50–61, New York, NY, USA, 2011. ACM.
[2] T. Hoff, Latency Is Everywhere And It Costs You Sales - How To Crush It. http://highscalability.com/latency-everywhere-and-it-costs-you-sales-howcrush-it.
[3] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. Bcube: a high performance, server-centric network architecture for modular data centers. SIGCOMM Comput. Commun. Rev., 2009.
[4] D. Lagun and E. Agichtein. Viewser: Enabling large-scale remote user studies of web search examination and interaction. In ACM SIGIR, 2011.
[5] G. Buscher, S.T. Dumais, and E. Cutrell. The good, the bad, and the random: an eye-tracking study of ad quality in web search. In Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval, pages 42–49. ACM, 2010.
[6] E. Cutrell and Z. Guan. What are you looking for?: an eye-tracking study of information usage in web search. In Proceedings of the SIGCHI conference on Human factors in computing systems. ACM, 2007.
[7] L. Lorigo, M. Haridasan, H. Brynjarsdóttir, L. Xia, T. Joachims, G. Gay, L. Granka, F. Pellacini, and B. Pan. Eye tracking and online search: Lessons learned and challenges ahead. Journal of the American Society for Information Science and Technology, 2008.
[8] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data center tcp (dctcp). In Proceedings of the ACM SIGCOMM 2010 conference, SIGCOMM ’10, pages 63–74, New York, NY, USA, 2010. ACM.
[9] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang. Mdcube: a high performance network structure for modular data center interconnection. In Proceedings of the 5th international conference on Emerging networking experiments and technologies, pages 25–36. ACM, 2009.
[10] Costin Raiciu, Christopher Pluntke, Sebastien Barre, Adam Greenhalgh, Damon Wischik, and Mark Handley. Data center networking with multipathtcp. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX, pages 10:1–10:6, New York, NY, USA, 2010. ACM.
[11] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and Anthony D. Joseph. Understanding tcp incast throughput collapse in datacenter networks. In Proceedings of the 1st ACM workshop on Research on enterprise networking, WREN ’09, New York, NY, USA, 2009. ACM.
[12] Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and Yongguang Zhang. Ictcp: Incast congestion control for tcp in data center networks. In Proceedings of the 6th International COnference, Co-NEXT ’10, New York, NY, USA, 2010. ACM.
[13] Advait Dixit, Fang Hao, Sarit Mukherjee, TV Lakshman, and Ramana Kompella. Towards an elastic distributed sdn controller. In ACM SIGCOMMComputer Communication Review, volume 43, pages 7–12. ACM, 2013.
[14] Diego Kreutz, Fernando MV Ramos, P Esteves Verissimo, Christian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined networking: A comprehensive survey. proceedings of the IEEE, 103(1):14–76, 2015.
[15] T. N. Vijaykumar Balajee Vamanan, Jahangir Hasan. Deadline-aware datacenter tcp (d2tcp). SIGCOMM’12, Purdue, West Lafayette, USA, 2012. ACM.
[16] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. Introduction to information retrieval, volume 1. Cambridge university press, 2008.
[17] NTCIR Project (2015, Oct 31). [Online]. Available: http://research.nii.ac.jp/ntcir/index-en.html.
[18] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. SIGOPS Oper. Syst. Rev., 2003.
[19] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown, Balaji Prabhakar, and Scott Shenker. pfabric: Minimal near-optimal datacenter transport. In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, pages 435–446. ACM, 2013.
[20] Amit Chakrabarti, Chandra Chekuri, Anupam Gupta, and Amit Kumar. Approximation algorithms for the unsplittable flow problem. In Proceedings of the 5th International Workshop on Approximation Algorithms for Combinatorial Optimization, APPROX ’02, pages 51–66, London, UK, UK, 2002. Springer-Verlag.
[21] R. M. Karp. Reducibility among combinatorial problems” in complexity of computer computations. 1972.
[22] The Network Simulator ns-2 (2015, Oct 31). [Online]. Available: http://www.isi.edu/nsnam/ns/.
[23] Dropbox. http://www.dropbox.com/.
[24] Microsoft SkyDrive. http://skydrive.live.com/.
[25] Google Drive. http://drive.google.com/.
[26] Apple iCloud. http://www.icloud.com/.
[27] Dropbox Now Has 175 Million Users. http://techcrunch.com/2013/07/09/dropbox-dbx-conference/.
[28] Carbonite Loses CustomersD́ata. http://techcrunch.com/2009/03/23/onlinebackup-company-carbonite-loses-customers-data-blames-and-sues-suppliers/.
[29] Google Stays Quiet After Black-Out. http://news.sky.com/story/1130621/google-stays-quiet-after-mystery-black-out/.
[30] Ahmed Ali-Eldin and Sameh El-Ansary. Optimizing replica placement inpeer-assisted cloud stores. In Utility and Cloud Computing (UCC), 2011,IEEE/ACM International Conference on, 2011.
[31] László Toka, Matteo Dell’Amico, and Pietro Michiardi. Online data backup: A peer-assisted approach. In Peer-to-Peer Computing (P2P), 2010 IEEE Tenth International Conference on. IEEE, 2010.
[32] K. Rzadca, A. Datta, and S. Buchegger. Replica placement in p2p storage: Complexity and game theoretic analyses. In IEEE ICDCS, 2010.
[33] Fangming Liu, Ye Sun, Bo Li, Baochun Li, and Xinyan Zhang. Fs2you: Peer-assisted semipersistent online hosting at a large scale. Parallel and Distributed Systems, IEEE Transactions on, 21(10), 2010.
[34] Raymond Sweha, Vatche Ishakian, and Azer Bestavros. Angels in the cloud: A peer-assisted bulk-synchronous content distribution service. In Cloud Computing (CLOUD), 2011 IEEE International Conference on, pages 97–104. IEEE, 2011.
[35] Fangming Liu, Shijun Shen, Bo Li, Baochun Li, and Hai Jin. Cinematicquality vod in a p2p storage cloud: Design, implementation and measurements. Selected Areas in Communications, IEEE Journal on, 31(9):214–226, 2013.
[36] Juan Pedro Muñoz-Gea, Josemaria Malgosa-Sanahuja, and Pilar Manzanares- Lopez. Optimizing content placement in a peer-assisted vod architecture. Peer-to-Peer Networking and Applications, 6(3):340–360, 2013.
[37] Jian Zhao, Chuan Wu, and Xiaojun Lin. Locality-aware streaming in hybrid p2p-cloud cdn systems. Peer-to-Peer Networking and Applications, pages 1–16, 2013.
[38] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-area cooperative storage with cfs. SIGOPS Oper. Syst. Rev., 35:202– 215, 2001.
[39] Peter Druschel and Antony Rowstron. Past: A large-scale, persistent peer-topeer storage utility. In Proceedings of the Eighth Workshop on Hot Topics in Operating Systems, HOTOS ’01, 2001.
[40] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Chris Wells, and Ben Zhao. Oceanstore: an architecture for global-scale persistent storage. SIGARCH Comput. Archit. News, 28, 2000.
[41] Samuel Bernard and Fabrice Le Fessant. Optimizing peer-to-peer backup using lifetime estimations. In Proceedings of the 2009 EDBT/ICDT Workshops, 2009.
[42] Yu-Chih Tung, Kate Ching-Ju Lin, and Cheng-Fu Chou. Bandwidth-aware replica placement for peer-to-peer storage systems. In IEEE GLOBECOM, 2011.
[43] J. Kangasharju, K.W. Ross, and D.A. Turner. Optimizing file availability in peer-to-peer content distribution. In IEEE INFOCOM, 2007.
[44] M. Bjorkqvist, L.Y. Chen, M. Vukolic, and Xi Zhang. Minimizing retrieval latency for content cloud. In IEEE INFOCOM, 2011.
[45] Varun Gupta, Mor Harchol Balter, Karl Sigman, and Ward Whitt. Analysis of join-the-shortest-queue routing for web server farms. Perform. Eval., 64(9-12): 1062–1081, October 2007.
[46] Hwa-Chun Lin and C.S. Raghavendra. An approximate analysis of the join the shortest queue (jsq) policy. IEEE Transactions on Parallel and Distributed Systems, 7(3):301 –307, mar 1996.
[47] Ming-Hung Chen, Yu-Chih Tung, Cheng-Fu Chou, and Ching-Ju Lin. Minimizing Joint Response Time in Peer-assisted Cloud Storage Systems. Technical report, 2014.
[48] William J. Stewart. Introduction to the Numerical Solution of Markov Chains.
[49] Leonard Kleinrock. Queueing Systems I: Theory.
[50] A. Datta, M. Hauswirth, and K. Aberer. Updates in highly unreliable, replicated peer-to-peer systems. In IEEE ICDCS, 2003.
[51] Cheng Huang, Jin Li, and Keith W. Ross. Can internet video-on-demand be profitable? ACM SIGCOMM Comput. Commun. Rev., 37:133–144, August 2007.
[52] L. Toka, P. Cataldi, M. Dell’Amico, and P. Michiardi. Redundancy management for p2p backup. In IEEE INFOCOM, 2012.
[53] M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE Transactions on Parallel and Distributed Systems, 12(10):1094 –1104, oct 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49462-
dc.description.abstract近年來,由於諸如網頁搜尋、社群網路等新類型雲端服務的崛起,資料中心已經變得極為重要。作為一個不斷成長、且高收益的重要運算平台,資料中心必須要能夠滿足使用者的服務品質需求。在本論文中,我們將焦點專注於處理使用者在使用資料中心服務時,最為關心的因素中的兩項:服務延遲與回應資料品質。
由於頻寬是資料中心服務效能的一大重要瓶頸,因此在本論文中將專注於解決資料中心的頻寬議題。這議題可分為兩部分: 資料中心的內部頻寬與對外頻寬。在增加內部可得頻寬的方面,已經有許多優秀的方案被提出,但最終內部頻寬仍是有限的。因此我們專注於如何在有限的頻寬下,提供使用者更好的服務品質。為了達成此目標,我們提出一重要性覺察之資料遞送控制協定,藉此在有限的可得頻寬下,提供使用者較高的品質的回應資料。
而在資料中心對外頻寬的方面,過去主要依賴於內容傳遞網路(CDN),或以多個分散的資料中心來降低服務延遲,但這樣的方式也會帶來極高的額外開支,並且頻寬依然會是有限的。在此議題上,我們提出了用便宜的儲存資源作為交換,利用使用者端未使用的頻寬與儲存空間,來減低資料中心頻寬需求,並在低成本的狀況下,提供低延遲的資料遞送服務。
透過最佳化內部頻寬的使用,與增加用於遞送靜態資料的外部頻寬來源,本論文提出解決資料中心頻寬議題的完整方式。實驗結果也顯示出,本論文的研究將可有效提升回應資料品質,並在服務延遲限制下,有效減低資料中心的頻寬負擔。
zh_TW
dc.description.abstractIn recent years, data centers have played a critical role for fulfilling the requirements of new rapidly emerging services such as cloud storage, web search, online social network, and so on. Data centers, as critical computing platforms for ever-growing, high-revenue, must fulfill the requirements of those services for users. In this thesis, we aim to cope with two of the most concerned factors of users: the latency of services and the quality of results.
In this thesis, we focus on one of the major obstacles of data center performance, the bandwidth bottleneck. The bandwidth bottleneck can be divided into two aspects, i.e., the internal bandwidth and the external bandwidth. We note that there are a many different approaches to improve the available internal bandwidth. However, the internal bandwidth is still a limited resource. Hence, we focus on providing better service quality, i.e., better quality of results, under the constraint of bandwidth. To achieve this goal, we propose a importance-aware transmission control protocol to provide better quality results before deadline.
In contrast, the external bandwidth bottleneck is mostly relieved by content distribution network (CDN). However, the rental cost of CDN is high and the bandwidth is still limited by how much paid. Therefore, we exploit unused user-side bandwidth and storage to diminish the bandwidth requirement of data center. That is, we can provide low-latency data delivery service at low cost.
The experiment results shows that the strategies on dealing with internal and external bandwidth bottleneck can effectively improve the quality of results and provide low-latency delivery service to users at low cost.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:29:49Z (GMT). No. of bitstreams: 1
ntu-105-D98922028-1.pdf: 2307485 bytes, checksum: 6911cab1f00b02843d7f283795d14a3a (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書i
致謝ii
中文摘要iii
Abstract iv
Contents vi
List of Figures ix
List of Tables xi
1 Introduction 1
2 Importance-aware Transmission Control Protocol for Server-centric Data Centers 6
2.1 Introduction to ITCP . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Problem Formulation and Discussions . . . . . . . . . . . . . . . . . . 12
2.2.1 Model of Importance-aware Data Center Networks . . . . . . 13
2.2.2 Global Optimization in Data Center Networks . . . . . . . . . 13
2.2.3 Local Optimization in Server-centric Data Center Networks . 15
2.3 Importance-aware Transmission Control Protocol (ITCP) . . . . . . . 17
2.3.1 Flow Importance Contribution Metric . . . . . . . . . . . . . 18
2.3.2 Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Distributed Rate Control . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Flow Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Compared Protocols . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3 Synthetic dataset results . . . . . . . . . . . . . . . . . . . . . 26
2.4.4 NTCIR dataset results . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3 Minimizing Joint Response Time in Peer-assisted Cloud Storage Systems 35
3.1 Introduction to Peer-assisted Cloud Storage Systems . . . . . . . . . 35
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Analysis of the Load Imbalance Problem . . . . . . . . . . . . . . . . 41
3.4 System Model for Joint Response Time . . . . . . . . . . . . . . . . . 44
3.4.1 Joint Response Time . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.3 Group-based Markov Model . . . . . . . . . . . . . . . . . . . 47
3.4.4 Inter-group Replication Model . . . . . . . . . . . . . . . . . . 50
3.5 Bandwidth-aware Replication Placement . . . . . . . . . . . . . . . . 51
3.5.1 User Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.2 Object Duplication . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.3 Object-Group Association . . . . . . . . . . . . . . . . . . . . 53
3.6 Performance Study and Discussion . . . . . . . . . . . . . . . . . . . 55
3.6.1 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.2 Performance of Service Selection . . . . . . . . . . . . . . . . 58
3.6.3 Performance of Replica Placement . . . . . . . . . . . . . . . 59
3.6.4 Storage Constraint . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6.5 Joint Response Time of Each Object . . . . . . . . . . . . . . 60
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4 Conclusion 63
Bibliography 66
dc.language.isoen
dc.subject服務延遲zh_TW
dc.subject數據中心zh_TW
dc.subject資料置放zh_TW
dc.subject通訊協定zh_TW
dc.subject同儕式輔助zh_TW
dc.subject重要性覺知zh_TW
dc.subjectImportance-awareen
dc.subjectProtocolen
dc.subjectData placementen
dc.subjectData centeren
dc.subjectService latencyen
dc.subjectPeer-assisteden
dc.title提升數據中心網路之用戶經驗服務品質zh_TW
dc.titleOn Improving User-Experienced Service Quality in Data Center Networksen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳耀宗,廖婉君,陳文進,鄭憲宗,陳健輝
dc.subject.keyword數據中心,服務延遲,重要性覺知,同儕式輔助,資料置放,通訊協定,zh_TW
dc.subject.keywordData center,Service latency,Importance-aware,Peer-assisted,Data placement,Protocol,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201602714
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved