請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49450
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許輔 | |
dc.contributor.author | I-Ju Cheng | en |
dc.contributor.author | 鄭伊茹 | zh_TW |
dc.date.accessioned | 2021-06-15T11:29:15Z | - |
dc.date.available | 2021-08-25 | |
dc.date.copyright | 2016-08-25 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-17 | |
dc.identifier.citation | 台灣質譜學會 (2015)。質譜分析技術原理與應用。新北市:全華圖書。
郭孚燿 (2012)。番茄栽培技術。行政院農委會。https://kmweb.coa.gov.tw/subject/public/Data/21315361471.pdf 陳正次、盧淑芬、陳福全、黃永光 (2008)。番茄種原蒐集及利用。農業生技產業應用研討會。 陳正次 (2013)。番茄品種特性簡介。小番茄產銷技術與經驗分享研討會專輯。台南區農業改良場。 陳正次 (2015)。番茄栽培管理。行政院農委會。https://kmweb.coa.gov.tw/subject/public/Data/5102611374271.pdf 陳偉齊 (2015)。建立金針菇免疫調節蛋白 FIP-fve 之生物可及性。國立臺灣大學園藝暨景觀學研究所碩士論文。臺北。 陳煥文、李明、金欽漢 (2004)。質譜儀器及其發展。大學化學,19(3):9-15。 陳頌方、黎培鈺、沈蕙如 (2007)。找尋生物指標的利器:差異蛋白質體學分析平台之簡介。中國化學會 (The Chinese Chemical Society, Taipei),65(2):211-224。 陸亞麗、孫愛華、賀福初、薑穎 (2013)。同位素稀釋法在絕對定量蛋白質組中的研究進展。Progress in Biochemistry and Biophysics, 40(12):1201-1208。 楊偉正 (1992)。茄科篇。台灣地區現有作物栽培品種目錄。台中農業試驗所、中國種苗改進協會。 葉信平。番茄裡的茄紅素 (2005)。科學發展,390,38-41 劉依昌、鄭安秀、陳文雄、王仕賢 (2016)。國產優良品牌小蕃茄生產管理技術作業標準。行政院農業委員會台南區農業改良場。 蔡季霖 (2014)。建立番茄過敏原 Sola l 1 分析平台及評估數種番茄品種中 Sola l 1 含量。國立臺灣大學園藝暨景觀學研究所碩士論文。臺北。 蔡肇基 (2004)。水果過敏與花粉過敏。春暉健康樂活家。http://www.healthcare.com.tw (accessed 2012/12/12)。 衛生福利部食品藥物管理署 (2013)。食品化學檢驗方法之確效規範。 http://www.fda.gov.tw/TC/siteList.aspx?sid=4115 戴振洋、陳榮五、蔡宜峰 (2009)。牛番茄介質耕栽培技術。農業世界,307, 78-88。 戴振洋 (2009)。設施番茄介質耕栽培技術。台中區農業技術專刊。行政院農委會台中區農業改良場。 Aalberse, R. C. (2000). Structural biology of allergens. Journal of Allergy and Clinical Immunology, 106(2), 228-238. Aalberse, R. C. (2007). Assessment of allergen cross-reactivity. Clinical and Molecular Allergy, 5(1), 1. Aalberse, R. C., Akkerdaas, J., & Van Ree, R. (2001). Cross‐reactivity of IgE antibodies to allergens. Allergy, 56(6), 478-490. Akiyama, H., Imai, T., & Ebisawa, M. (2011). Japan Food Allergen Labeling Regulation- History and Evaluation. Advances in food and nutrition research,62, 139-171. Arab, L., & Steck, S. (2000). Lycopene and cardiovascular disease. The American journal of clinical nutrition, 71(6), 1691s-1695s. Armentia, A., Callejo, A., Martín-Gil, F. J., Díaz-Perales, A., & Salcedo, G. (2003). Enhancement of tomato allergenicity after treatment with plant hormones. Allergologia et immunopathologia, 31(1), 44-46. Atherton, J., & Rudich, J. (Eds.). (2012). The tomato crop: a scientific basis for improvement. Springer Science & Business Media. Aye, T. T., Low, T. Y., Bj?rlykke, Y., Barsnes, H., Heck, A. J., & Berven, F. S. (2012). Use of stable isotope dimethyl labeling coupled to selected reaction monitoring to enhance throughput by multiplexing relative quantitation of targeted proteins. Analytical chemistry, 84(11), 4999-5006. Aye, T. T., Mohammed, S., van den Toorn, H. W., Van Veen, T. A., van der Heyden, M. A., Scholten, A., & Heck, A. J. (2009). Selectivity in enrichment of cAMP-dependent protein kinase regulatory subunits type I and type II and their interactors using modified cAMP affinity resins. Molecular & Cellular Proteomics, 8(5), 1016-1028. Baldo, B. A., & Pham, N. H. (2013). Classification and descriptions of allergic reactions to drugs. In Drug Allergy (pp. 15-35). Springer New York. Ballmer-Weber, B. K., & Hoffmann-Sommergruber, K. (2011). Molecular diagnosis of fruit and vegetable allergy. Current opinion in allergy and clinical immunology, 11(3), 229-235. Bässler, O. Y., Weiss, J., Wienkoop, S., Lehmann, K., Scheler, C., Dölle, S., ... & Weckwerth, W. (2009). Evidence for Novel Tomato Seed Allergens: IgE-Reactive Legumin and Vicilin Proteins Identified by Multidimensional Protein Fractionation− Mass Spectrometry and in Silico Epitope Modeling. Journal of proteome research, 8(3), 1111-1122. Beezhold, D. H., Sussman, G. L., Liss, G. M., & CHANG, N. S. (1996). Latex allergy can induce clinical reactions to specific foods. Clinical & Experimental Allergy, 26(4), 416-422. Blagoev, B., & Mann, M. (2006). Quantitative proteomics to study mitogen-activated protein kinases. Methods, 40(3), 243-250. Blais, B. W., Gaudreault, M., & Phillippe, L. M. (2003). Multiplex enzyme immunoassay system for the simultaneous detection of multiple allergens in foods. Food Control, 14(1), 43-47. Bleumink, E., Berrens, L., & Young, E. (1967). Studies on the atopic allergen in ripe tomato fruits. International Archives of Allergy and Immunology, 31(1), 25-37. Boersema, P. J., Aye, T. T., van Veen, T. A., Heck, A. J., & Mohammed, S. (2008). Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics, 8(22), 4624. Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S., & Heck, A. J. (2009). Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature protocols, 4(4), 484-494. Bramley, P. M. (2000). Is lycopene beneficial to human health?.Phytochemistry, 54(3), 233-236. Breiteneder, H., & Ebner, C. (2000). Molecular and biochemical classification of plant-derived food allergens. Journal of Allergy and Clinical Immunology,106(1), 27-36. Breiteneder, H., & Radauer, C. (2004). A classification of plant food allergens.Journal of allergy and clinical immunology, 113(5), 821-830. Burks, A. W., Tang, M., Sicherer, S., Muraro, A., Eigenmann, P. A., Ebisawa, M., ... & Hourihane, J. (2012). ICON: food allergy. Journal of Allergy and Clinical Immunology, 129(4), 906-920. Careri, M., Costa, A., Elviri, L., Lagos, J. B., Mangia, A., Terenghi, M., ... & Garoffo, L. P. (2007). Use of specific peptide biomarkers for quantitative confirmation of hidden allergenic peanut proteins Ara h 2 and Ara h 3/4 for food control by liquid chromatography–tandem mass spectrometry. Analytical and bioanalytical chemistry, 389(6), 1901-1907. Careri, M., Elviri, L., Mangia, A., & Mucchino, C. (2007). ICP-MS as a novel detection system for quantitative element-tagged immunoassay of hidden peanut allergens in foods. Analytical and bioanalytical chemistry, 387(5), 1851-1854. Carnés, J., Ferrer, A., & Fernández-Caldas, E. (2006). Allergenicity of 10 different apple varieties. Annals of Allergy, Asthma & Immunology, 96(4), 564-570. Carpentier, S. C., Witters, E., Laukens, K., Deckers, P., Swennen, R., & Panis, B. (2005). Preparation of protein extracts from recalcitrant plant tissues: An evaluation of different methods for two‐dimensional gel electrophoresis analysis. Proteomics, 5(10), 2497-2507. Chahrour, O., Cobice, D., & Malone, J. (2015). Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. Journal of pharmaceutical and biomedical analysis, 113, 2-20. Cheng, D., Zheng, L., Hou, J., Wang, J., Xue, P., Yang, F., & Xu, T. (2015). A new dimethyl labeling-based SID-MRM-MS method and its application to three proteases involved in insulin maturation. Biophysics Reports, 1(2), 71-80. Cohen, S. L., & Chait, B. T. (1996). Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Analytical chemistry, 68(1), 31-37. Crevel, R. W., Ballmer‐Weber, B. K., Holzhauser, T., Hourihane, J. B., Knulst, A. C., Mackie, A. R., ... & Taylor, S. L. (2008). Thresholds for food allergens and their value to different stakeholders. Allergy, 63(5), 597-609. De Novo, D. I. L. A. (2010). Peptide Sequencing Hennrich, Marco L.; Mohammed, Shabaz; Altelaar, AF Maarten; Heck, Albert JR. Journal of the American Society for Mass Spectrometry, 21(12), 1957-1965. Descotes, J., & Choquet-Kastylevsky, G. (2001). Gell and Coombs's classification: is it still valid?. Toxicology, 158(1), 43-49. DeSouza, L. V., & Siu, K. M. (2013). Mass spectrometry-based quantification.Clinical biochemistry, 46(6), 421-431. FAO statistical yearbook 2014: Asia and the Pacific food and agriculture, 72. Ferreira, F., Hawranek, T., Gruber, P., Wopfner, N., & Mari, A. (2004). Allergic cross‐reactivity: from gene to the clinic. Allergy, 59(3), 243-267. Foetisch, K., Son, D., Altmann, F., Aulepp, H., Conti, A., Haustein, D., & Vieths, S. (2001). Tomato (Lycopersicon esculentum) allergens in pollen-allergic patients. European Food Research and Technology, 213(4-5), 259-266. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific Bangkok, 2014. Gegengeimer, P. (1990). [14] Preparation of Extracts from Plants. Methods in enzymology, 182, 174-193. Gendel, S. M. (2012). The regulatory challenge of food allergens. Journal of agricultural and food chemistry, 61(24), 5634-5637. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W., & Gygi, S. P. (2003). Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proceedings of the National Academy of Sciences, 100(12), 6940-6945. Gould, W. A. (2013). Tomato production, processing and technology. Elsevier. Guideline, I. H. T. (2005). Validation of analytical procedures: text and methodology. Q2 (R1), 1. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., & Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature biotechnology, 17(10), 994-999. Han, Y., Lu, C., Zhang, K., Tian, S., Fan, E., Chen, L., ... & Zhang, Y. (2015). Quantitative characterization of histone post-translational modifications using a stable isotope dimethyl-labeling strategy. Analytical Methods, 7(9), 3779-3785. Harvey, M., Quilley, S., & Beyon, H. (2002). Exploring the tomato. Books. Hauser, M., Egger, M., Wallner, M., Wopfner, N., Schmidt, G., & Ferreira, F. (2008). Molecular properties of plant food allergens: a current classification into protein families. The Open Immunology Journal, 1, 1-12. Hefle, S. L., Nordlee, J. A., & Taylor, S. L. (1996). Allergenic foods. Critical Reviews in Food Science & Nutrition, 36(S1), 69-89. Hennrich, M. L., Mohammed, S., Altelaar, A. M., & Heck, A. J. (2010). Dimethyl isotope labeling a Han, Y., Lu, C., Zhang, K., Tian, S., Fan, E., Chen, L., ... & Zhang, Y. (2015). Quantitative characterization of histone post-translational modifications using a stable isotope dimethyl-labeling strategy. Analytical Methods, 7(9), 3779-3785. Heuvelink, E. (Ed.). (2005). Tomatoes (Vol. 13). CABI. Hsu, J. L., Huang, S. Y., Chow, N. H., & Chen, S. H. (2003). Stable-isotope dimethyl labeling for quantitative proteomics. Analytical chemistry, 75(24), 6843-6852. Ippoushi, K., Sasanuma, M., Oike, H., Kobori, M., & Maeda-Yamamoto, M. (2015). Absolute quantification of protein NP24 in tomato fruit by liquid chromatography/tandem mass spectrometry using stable isotope-labelled tryptic peptide standard. Food chemistry, 173, 238-242. Ji, C., Guo, N., & Li, L. (2005). Differential dimethyl labeling of N-termini of peptides after guanidination for proteome analysis. Journal of proteome research, 4(6), 2099-2108. Ji, C., Li, L., Gebre, M., Pasdar, M., & Li, L. (2005). Identification and quantification of differentially expressed proteins in E-cadherin deficient SCC9 cells and SCC9 transfectants expressing E-cadherin by dimethyl isotope labeling, LC-MALDI MS and MS/MS. Journal of proteome research, 4(4), 1419-1426. Julka, S., & Regnier, F. (2004). Quantification in proteomics through stable isotope coding: a review. Journal of proteome research, 3(3), 350-363. Kagan, R. S. (2003). Food allergy: an overview. Environmental health perspectives, 111(2), 223. Katz, E., Fon, M., Eigenheer, R. A., Phinney, B. S., Fass, J. N., Lin, D., ... & Blumwald, E. (2010). A label-free differential quantitative mass spectrometry method for the characterization and identification of protein changes during citrus fruit development. Proteome science, 8(1), 1. Kim, K. T., & Hussain, H. (1999, March). Prevalence of food allergy in 137 latex-allergic patients. In Allergy and Asthma Proceedings (Vol. 20, No. 2, pp. 95-97). OceanSide Publications, Inc. Kindt, T. J., Goldsby, R. A., Osborne, B. A., & Kuby, J. (2007). Kuby immunology. Macmillan. Kinter, M., & Sherman, N. E. (2005). Protein sequencing and identification using tandem mass spectrometry (Vol. 9). John Wiley & Sons. Kirsch, S., Fourdrilis, S., Dobson, R., Scippo, M. L., Maghuin-Rogister, G., & De Pauw, E. (2009). Quantitative methods for food allergens: a review. Analytical and bioanalytical chemistry, 395(1), 57-67. Kondo, Y., Urisu, A., & Tokuda, R. (2002). Identification and characterization of the allergens in the tomato fruit by immunoblotting. International Archives of Allergy and Immunology, 126(4), 294-299. Koppelman, S. J., Knulst, A. C., Koers, W. J., Penninks, A. H., Peppelman, H., Vlooswijk, R., ... & Hessing, M. (1999). Comparison of different immunochemical methods for the detection and quantification of hazelnut proteins in food products. Journal of immunological methods, 229(1), 107-120. Krüger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C. A., Forner, F., ... & Mann, M. (2008). SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell, 134(2), 353-364. Larramendi, C. H., Ferrer, A., Huertas, A. J., García‐Abujeta, J. L., Andreu, C., Tella, R., ... & López‐Matas, M. A. (2008). Sensitization to tomato peel and pulp extracts in the Mediterranean Coast of Spain: prevalence and co‐sensitization with aeroallergens. Clinical & Experimental Allergy, 38(1), 169-177. Le, L. Q., Mahler, V., Lorenz, Y., Scheurer, S., Biemelt, S., Vieths, S., & Sonnewald, U. (2006). Reduced allergenicity of tomato fruit, S., Scheurer, S., & BALLMER‐WEBER, B. A. R. B. A. R. A. (2002). Current understanding of cross‐reactivity of food allergens and pollen. Annals of the New York Academy of Sciences, 964(1), 47-68. Lee, D. G., Houston, N. L., Stevenson, S. E., Ladics, G. S., McClain, S., Privalle, L., & Thelen, J. J. (2010). Mass spectrometry analysis of soybean seed proteins: optimization of gel-free quantitative workflow. Analytical Methods, 2(10), 1577-1583. Leinonen, A., Kuuranne, T., & Kostiainen, R. (2002). Liquid chromatography/mass spectrometry in anabolic steroid analysis—optimization and comparison of three ionization techniques: electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization. Journal of mass spectrometry, 37(7), 693-698. Lemeer, S., Jopling, C., Gouw, J., Mohammed, S., Heck, A. J., Slijper, M., & den Hertog, J. (2008). Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos. Molecular & Cellular Proteomics, 7(11), 2176-2187. López-Matas, M. Á., Larramendi, C. H., Ferrer, Á., Huertas, Á. J., Pagán, J. A., García-Abujeta, J. L., ... & Carnés, J. (2011). Identification and quantification of tomato allergens: in vitro characterization of six different varieties. Annals of Allergy, Asthma & Immunology, 106(3), 230-238. Lößner, C., Warnken, U., Pscherer, A., & Schnölzer, M. (2011). Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions. Analytical biochemistry, 412(1), 123-125 Matuszewski, B. K., Constanzer, M. L., & Chavez-Eng, C. M. (2003). Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Analytical chemistry, 75(13), 3019-3030. Monaci, L., & Visconti, A. (2009). Mass spectrometry-based proteomics methods for analysis of food allergens. TrAC Trends in Analytical Chemistry,28(5), 581-591. Ong, S. E., & Mann, M. (2005). Mass spectrometry–based proteomics turns quantitative. Nature chemical biology, 1(5), 252-262. Otzen, D. E. (2002). Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature. Biophysical journal, 83(4), 2219-2230. Panchaud, A., Affolter, M., Moreillon, P., & Kussmann, M. (2008). Experimental and computational approaches to quantitative proteomics: status quo and outlook. Journal of proteomics, 71(1), 19-33. Pappin, D. J., Hojrup, P., & Bleasby, A. J. (1993). Rapid identification of proteins by peptide-mass fingerprinting. Current biology, 3(6), 327-332. Polson, C., Sarkar, P., Incledon, B., Raguvaran, V., & Grant, R. (2003). Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, 785(2), 263-275. Poms, R. E., Anklam, E., & Kuhn, M. (2004). Polymerase chain reaction techniques for food allergen detection. Journal of AOAC International, 87(6), 1391-1397. Poms, R. E., Klein, C. L., & Anklam, E. (2004). Methods for allergen analysis in food: a review. Food additives and contaminants, 21(1), 1-31. Pravettoni, V., Primavesi, L., Farioli, L., Brenna, O. V., Pompei, C., Conti, A., ... & Pastorello, E. A. (2009). Tomato allergy: detection of IgE-binding lipid transfer proteins in tomato derivatives and in fresh tomato peel, pulp, and seeds. Journal of agricultural and food chemistry, 57(22), 10749-10754. Primavesi, L., Pravettoni, V., Brenna, O. V., Farioli, L., Pastorello, E. A., & Pompei, C. (2011). Influence of technological processing on the allergenicity of tomato products. European Food Research and Technology, 232(4), 631-636. Radauer, C., Willerroider, M., Fuchs, H., Hoffmann‐Sommergruber, K., Thalhamer, J., Ferreira, F., ... & Breiteneder, H. (2006). Cross‐reactive and species‐specific immunoglobulin E epitopes of plant profilins: an experimental and structure‐based analysis. Clinical & Experimental Allergy, 36(7), 920-929. Raijmakers, R., Berkers, C. R., de Jong, A., Ovaa, H., Heck, A. J., & Mohammed, S. (2008). Automated online sequential isotope labeling for protein quantitation applied to proteasome tissue-specific diversity. Molecular & Cellular Proteomics, 7(9), 1755-1762. Rajan, T. V. (2003). The Gell–Coombs classification of hypersensitivity reactions: a re-interpretation. Trends in immunology, 24(7), 376-379. Rick, C. M. (1978). The tomato. Scientific American, 239, 76-87. Robles, M. S., & Mann, M. (2013). Proteomic approaches in circadian biology. In Circadian clocks (pp. 389-407). Springer Berlin Heidelberg. Saravanan, R. S., & Rose, J. K. (2004). A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics, 4(9), 2522-2532. Schulze, W. X., & Usadel, B. (2010). Quantitation in mass-spectrometry-based proteomics. Annual review of plant biology, 61, 491-516. Shefcheck, K. J., & Musser, S. M. (2004). Confirmation of the allergenic peanut protein, Ara h 1, in a model food matrix using liquid chromatography/tandem mass spectrometry (LC/MS/MS). Journal of agricultural and food chemistry, 52(10), 2785-2790. Shevchenko, A., Tomas, H., Havli, J., Olsen, J. V., & Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature protocols, 1(6), 2856-2860. Sims, W. L. (1979). History of tomato production for industry around the world. In Symposium on Production of Tomatoes for Processing 100 (pp. 25-26). Slechtova, T., Gilar, M., Kalikova, K., & Tesarova, E. (2015). Insight into Trypsin Miscleavage: Comparison of Kinetic Constants of Problematic Peptide Sequences. Analytical chemistry, 87(15), 7636-7643. Song, J., Braun, G., Bevis, E., & Doncaster, K. (2006). A simple protocol for protein extraction of recalcitrant fruit tissues suitable for 2‐DE and MS analysis. Electrophoresis, 27(15), 3144-3151. Staiger, C. J. (2000). Signaling to the actin cytoskeleton in plants. Annual review of plant biology, 51(1), 257-288. Sury, M. D., Chen, J. X. X., & Selbach, M. (2010). The SILAC fly allows for accurate protein quantification in vivo. Molecular & Cellular Proteomics, mcp-M110. Swartz, M. E., & Krull, I. S. (Eds.). (1997). Analytical method development and validation. CRC Tuft, L., & Blumstein, G. I. (1942). Studies in food allergy: II. Sensitization to fresh fruits: Clinical and experimental observations. Journal of Allergy, 13(6), 574-582. Van Hengel, A. J. (2007). Food allergen detection methods and the challenge to protect food-allergic consumers. Analytical and bioanalytical chemistry, 389(1), 111-118. Varesio, E., Cherkaoui, S., & Veuthey, J. L. (1998). Optimization of CE-ESI-MS parameters for the analysis of ecstasy and derivatives in urine. Journal of High Resolution Chromatography, 21(12), 653-657. Vieths, S., Scheurer, S., & BALLMER‐WEBER, B. A. R. B. A. R. A. (2002). Current understanding of cross‐reactivity of food allergens and pollen. Annals of the New York Academy of Sciences, 964(1), 47-68. Viswanathan, S., Ünlü, M., & Minden, J. S. (2006). Two-dimensional difference gel electrophoresis. Nature protocols, 1(3), 1351-1358. Wang, J., Gao, L., Lee, Y. M., Kalesh, K. A., Ong, Y. S., Lim, J., ... & Lin, Q. (2016). Target identification of natural and traditional medicines with quantitative chemical proteomics approaches. Pharmacology & Therapeutics. Wang, W., Scali, M., Vignani, R., Spadafora, A., Sensi, E., Mazzuca, S., & Cresti, M. (2003). Protein extraction for two‐dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds.Electrophoresis, 24(14), 2369-2375. Weber, D., Raymond, P., Ben-Rejeb, S., & Lau, B. (2006). Development of a liquid chromatography-tandem mass spectrometry method using capillary liquid chromatography and nanoelectrospray ionization-quadrupole time-of-flight hybrid mass spectrometer for the detection of milk allergens. Journal of agricultural and food chemistry, 54(5), 1604-1610. Westphal, S., Kempf, W., Foetisch, K., Retzek, M., Vieths, S., & Scheurer, S. (2004). Tomato profilin Lyc e 1: IgE cross‐reactivity and allergenic potency.Allergy, 59(5), 526-532. Willerroider, M., Fuchs, H., Ballmer-Weber, B. K., Focke, M., Susani, M., Thalhamer, J., ... & Hoffmann-Sommergruber, K. (2003). Cloning and molecular and immunological characterisation of two new food allergens, Cap a 2 and Lyc e 1, profilins from bell pepper (Capsicum annuum) and Tomato (Lycopersicon esculentum). International archives of allergy and immunology, 131(4), 245-255. Yates, J. R., Ruse, C. I., & Nakorchevsky, A. (2009). Proteomics by mass spectrometry: approaches, advances, and applications. Annual review of biomedical engineering, 11, 49-79. Ye, X., Luke, B., Andresson, T., & Blonder, J. (2009). 18O stable isotope labeling in MS-based proteomics. Briefings in Functional Genomics, eln055. Young, E., Stoneham, M. D., Petruckevitch, A., Barton, J., & Rona, R. (1994). A population study of food intolerance. The Lancet, 343(8906), 1127-1130. Yu, Y. Q., Gilar, M., Lee, P. J., Bouvier, E. S., & Gebler, J. C. (2003). Enzyme-friendly, mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Analytical chemistry, 75(21), 6023-6028. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49450 | - |
dc.description.abstract | 番茄為台灣一重要的致敏蔬果,近年來 Sola l 1被歸類為番茄果實中一個新的次要過敏原,因其序列保守且結構相近而時常造成食物與花粉間的交叉反應導致過敏現象。免疫分析法為目前最常用於檢測食品過敏原的方法,然因交叉反應的存在而導致其可能產生錯誤的結果而無法有效偵測過敏原,因此,須尋求特異性更加的番茄過敏原分析方法。質譜技術具有高特異性、高靈敏度、高準確度及分析速度快等特點,而常被用於各領域之定性與定量分析,其中 MRM 為目前串聯質譜中最常用於定量的方式。穩定同位素二甲基標記因具有高效、快速、簡便、廉價等優點,近年來已被廣泛用於蛋白質體學上的定量,然而目前卻無人將其應用於植物性蛋白上。故本研究目的在於利用穩定同位素二甲基標記結合質譜技術開發新方法,並以此建立番茄過敏原 Sola l 1 的定量平台,進而應用於食品分析之領域。
研究主要分為三個部分:第一部分為利用重組蛋白 rSola l 1 搭配 Q-TOF 進行定性分析,並找出一段穩定且適合的胜肽序列作為目標蛋白之標準胜肽,結果表明,利用 trypsin 進行水解可得到一段帶有 13 個胺基酸之獨特且可信的胜肽片段 YR,確認後將該序列合成以進行後續分析;第二部分藉由甲醛氫同位素與氘同位素試劑分別對 YR 進行標定,其結果顯示兩者標記後皆無殘留之原胜肽,說明其具有良好的標記效率;而後將 YR-H 配製成不同濃度,並加入固定量之 YR-D 作為內標準品以 QqQ 繪製檢量線,進而對番茄中之 Sola l 1 蛋白進行定量,該檢量線表明胜肽濃度範圍為 0.5-2500 ng/mL 時與質譜反應量之間具有良好的線性關係;第三部分為探討該分析方法並予以確效,藉由線性、回收率、偵測極限及定量極限、重複性等評估此分析方法是否適用,結果發現,該方法皆適用於番茄重組蛋白和標準胜肽,且具有良好的線性和準確度,搭配 MRM 所得之重組蛋白偵測與定量極限皆為 0.5 μg/mL,標準胜肽樣品之偵測與定量極限最低則分別可至 0.1 ng/mL 和 0.5 ng/mL,展現其於蛋白質定量上之潛力。 | zh_TW |
dc.description.abstract | In Taiwan, tomato is one of the most important vegetables that frequent causes of allergy. Recently, Sola l 1 was confirmed as a new minor allergen in tomato fruits. Because of the highly conserved sequence of protein structure among profilins, highly cross-reactive usually happen between pollen and foods and then caused allergic symptoms. Immunization assay is the most common method to detect food allergens. However, it may lead to false positive or false negative results due to the presence of cross-reactions. Therefore, we must to seek a specific method to analyze tomato allergens. Mass spectrometry has the advantage of high specificity, high sensitivity, high accuracy and rapid analysis, so it is used in many different fields for qualitative and quantitative analysis. Multiple reaction monitoring (MRM) is the most common method for quantitation with tandem mass spectrometry. Stable isotope dimethyl labeling has been widely used in quantitative proteomics due to it is highly efficient, fast, simple and inexpensive, but nobody applies it to vegetable protein sample. The purpose of this study was to develop a novel strategy by using stable isotope dimethyl labeling with LC - MS/MS, and establish the analysis platform for tomato allergen Sola l 1 then applied to the fields of food analysis.
First, we analyzed the recombinant protein rSola l 1 by trypsin digestion and identified its sequence by Q-TOF, then found a suitable peptide as the standard peptide of target protein. The qualitative result showed that the peptide YR, which has 13 amino acids in length, was stable and unique. The standard peptide was synthesized and used to synthesized for further experiments. Second, the synthetic peptide YR was labeled with formaldehyde-H2 and formaldehyde-D2, respectively. The dimethylated tryptic peptides were subsequently analyzed by Q-TOF. The result indicated the YR peptides obtain a complete labeling of N-terminal residue, and it represented that the method equipped with a good labeling efficiency. A series of different concentration of light stable isotope dimethyl-labeled synthetic peptides (YR-H) were prepared, and fixed concentration of intermediate stable isotope dimethyl-labeled synthetic peptides (YR-D) were spiked as internal standards. The calibration curve was obtained and indicated a good linear relationship of the concentration of YR-H between 0.5 ng/mL to 2500 ng/mL, and it could be used for quantitation of target protein. Further, we validated the method through evaluating its linearity, recovery, limit of detection and quantification and repeatability, the result showed that dimethyl-labeled could be applied to recombinant protein and standard peptides, and it was reliable and accurate. The detection and quantification limits (LOD and LOQ) that analyzed by MRM of recombinant protein were both 0.5 μg/mL, and standard peptides were 0.1 ng/mL and 0.5 ng/mL, respectively, and this method showed potential for comprehensive quantification of protein. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:29:15Z (GMT). No. of bitstreams: 1 ntu-105-R03628207-1.pdf: 4380360 bytes, checksum: b279c069879287069e89b176c60a0e59 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 IV Abstract VI 圖目錄 XI 表目錄 XII 壹、緒論 1 一、食品過敏 1 1.1.免疫系統與過敏反應之簡介 1 1.2.過敏反應症狀及其類型 1 1.3.過敏原的交叉反應 3 1.4.蔬果中的過敏原 4 1.5.食品過敏與過敏原的檢測方法 6 二、番茄相關介紹 9 2.1.番茄簡介 9 2.2.番茄之成分組成 10 2.3.台灣番茄之生產現況 10 三、番茄致敏 12 3.1.番茄過敏現狀 12 3.2.番茄中的過敏原 12 3.3. Profilin 與 Sola l 1之介紹 14 四、質譜技術 15 4.1.質譜儀之原理與串聯質譜之應用 15 4.2.質譜技術於蛋白質體學定量之發展 16 4.3.穩定同位素標記方法 17 4.3.1.化學標定 (chemical labeling) 17 4.3.2.代謝標定 (metabolic labeling) 18 4.3.3.酵素標定 (enzymatic labeling) 19 4.3.4.合成標定 (synthetic labeling) 20 4.4.二甲基標記定量 21 五、分析方法之確效 22 六、研究動機與目的 24 貳、材料與方法 27 一、重組蛋白 r Sloa l 1 之製備與純化 27 二、番茄蛋白之萃取與 Sola l 1 之驗證 32 三、質譜序列分析與標準胜肽之選擇 36 四、二甲基同位素標記及其效率 42 五、質譜定量分析 44 六、方法確效 51 參、研究結果 52 一、重組蛋白之純化與定量胜肽之選擇 52 1.1.番茄重組蛋白 rSola l 1 之純化 52 1.2.重組蛋白 rSola l 1 序列分析 53 1.3.標準胜肽之選擇 53 1.4.合成胜肽之確認 54 二、二甲基同位素標記與定量分析 54 2.1.二甲基同位素標定後之胜肽質量及標記效率 54 2.2.標定後胜肽之線性及氧化後修飾胜肽與未修飾胜肽之相關性 56 2.3. MRM-MS 分析與參數優化 56 2.4.檢量線之繪製 57 2.5.分析牛番茄果實中之 Sola l 1 蛋白 57 三、番茄蛋白 Sola l 1 含量之分析與方法之確效 59 3.1.線性、偵測極限與定量極限 59 3.2. Sola l 1之定量與回收率之測定 60 肆、討論 61 一、消化酵素與定量胜肽之選擇 61 二、二甲基標定技術之探討與應用 62 三、MRM 參數之優化 64 四、番茄組織中 Sola l 1 之萃取與含量分析 65 五、不同番茄蛋白質萃取方法之基質效應 67 伍、結論與未來展望 69 陸、參考文獻 70 TABLES 84 FIGURES 92 | |
dc.language.iso | zh-TW | |
dc.title | 利用穩定同位素二甲基標記結合質譜技術檢測番茄過敏原 Sola l 1 之研究 | zh_TW |
dc.title | Using Stable Isotope Dimethyl Labeling Coupled with Mass Spectrometry to Detect Tomato Allergen Sola l 1 | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周志輝,潘敏雄,繆希椿 | |
dc.subject.keyword | 番茄過敏原,Sola l 1,肌動蛋白結合蛋白,二甲基標記,質譜技術,定量分析, | zh_TW |
dc.subject.keyword | tomato allergen,Sola l 1,profilin,dimethyl labeling,mass spectrometry,quantitative analysis, | en |
dc.relation.page | 112 | |
dc.identifier.doi | 10.6342/NTU201602420 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 4.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。