請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49441
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳示國(Shih-Kuo Chen) | |
dc.contributor.author | Nan-Fu Liou | en |
dc.contributor.author | 劉南甫 | zh_TW |
dc.date.accessioned | 2021-06-15T11:28:50Z | - |
dc.date.available | 2016-08-26 | |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-16 | |
dc.identifier.citation | Applebury, M.L., Antoch, M.P., Baxter, L.C., Chun, L.L.Y., Falk, J.D., Farhangfar, F., Kage, K., Krzystolik, M.G., Lyass, L.A., and Robbins, J.T. (2000). The Murine Cone Photoreceptor: A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning. Neuron 27, 513-523.
Badea, T.C., and Nathans, J. (2004). Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. The Journal of comparative neurology 480, 331-351. Barnard, A.R., Hattar, S., Hankins, M.W., and Lucas, R.J. (2006). Melanopsin regulates visual processing in the mouse retina. Current biology : CB 16, 389-395. Belenky, M.A., Smeraski, C.A., Provencio, I., Sollars, P.J., and Pickard, G.E. (2003). Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. The Journal of comparative neurology 460, 380-393. Berson, D.M., Dunn, F.A., and Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science (New York, NY) 295, 1070-1073. Boynton, R.M., and Whitten, D.N. (1970). Visual adaptation in monkey cones: recordings of late receptor potentials. Science (New York, NY) 170, 1423-1426. Cameron, M.A., Barnard, A.R., and Lucas, R.J. (2008). The electroretinogram as a method for studying circadian rhythms in the mammalian retina. Journal of genetics 87, 459-466. Dacey, D.M. (1985). Wide-spreading terminal axons in the inner plexiform layer of the cat's retina: evidence for intrinsic axon collaterals of ganglion cells. The Journal of comparative neurology 242, 247-262. Dacey, D.M., Liao, H.W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokorny, J., Yau, K.W., and Gamlin, P.D. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749-754. Dkhissi-Benyahya, O., Gronfier, C., De Vanssay, W., Flamant, F., and Cooper, H.M. (2007). Modeling the role of mid-wavelength cones in circadian responses to light. Neuron 53, 677-687. Ecker, J.L., Dumitrescu, O.N., Wong, K.Y., Alam, N.M., Chen, S.K., LeGates, T., Renna, J.M., Prusky, G.T., Berson, D.M., and Hattar, S. (2010). Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67, 49-60. Famiglietti, E.V., Jr., and Kolb, H. (1975). A bistratified amacrine cell and synaptic cirucitry in the inner plexiform layer of the retina. Brain research 84, 293-300. Freedman, M.S., Lucas, R.J., Soni, B., von Schantz, M., Munoz, M., David-Gray, Z., and Foster, R. (1999). Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science (New York, NY) 284, 502-504. Gilmour, G.S., Gaillard, F., Watson, J., Kuny, S., Mema, S.C., Bonfield, S., Stell, W.K., and Sauve, Y. (2008). The electroretinogram (ERG) of a diurnal cone-rich laboratory rodent, the Nile grass rat (Arvicanthis niloticus). Vision research 48, 2723-2731. Hattar, S., Liao, H.W., Takao, M., Berson, D.M., and Yau, K.W. (2002). Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science (New York, NY) 295, 1065-1070. Hattar, S., Lucas, R.J., Mrosovsky, N., Thompson, S., Douglas, R.H., Hankins, M.W., Lem, J., Biel, M., Hofmann, F., Foster, R.G., et al. (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424, 76-81. Hayashida, Y., and Ishida, A.T. (2004). Dopamine receptor activation can reduce voltage-gated Na+ current by modulating both entry into and recovery from inactivation. Journal of neurophysiology 92, 3134-3141. Hofer, H., Carroll, J., Neitz, J., Neitz, M., and Williams, D.R. (2005). Organization of the human trichromatic cone mosaic. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 9669-9679. Jackson, C.R., Ruan, G.X., Aseem, F., Abey, J., Gamble, K., Stanwood, G., Palmiter, R.D., Iuvone, P.M., and McMahon, D.G. (2012). Retinal dopamine mediates multiple dimensions of light-adapted vision. The Journal of neuroscience : the official journal of the Society for Neuroscience 32, 9359-9368. Jacobs, G.H., Williams, G.A., and Fenwick, J.A. (2004). Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse. Vision research 44, 1615-1622. Jeon, C.J., Strettoi, E., and Masland, R.H. (1998). The major cell populations of the mouse retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 18, 8936-8946. Joo, H.R., Peterson, B.B., Dacey, D.M., Hattar, S., and Chen, S.K. (2013). Recurrent axon collaterals of intrinsically photosensitive retinal ganglion cells. Visual neuroscience 30, 175-182. Keeler, C.E., Sutcliffe, E., and Chaffee, E.L. (1928). Normal and 'Rodless' Retinae of the House Mouse with Respect to the Electromotive Force Generated through Stimulation by Light. Proceedings of the National Academy of Sciences of the United States of America 14, 477-484. Klein, D.C., and Weller, J.L. (1972). Rapid light-induced decrease in pineal serotonin N-acetyltransferase activity. Science (New York, NY) 177, 532-533. Klitten, L.L., Rath, M.F., Coon, S.L., Kim, J.S., Klein, D.C., and Moller, M. (2008). Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina. Experimental eye research 87, 471-477. Knapp, A.G., and Dowling, J.E. (1987). Dopamine enhances excitatory amino acid-gated conductances in cultured retinal horizontal cells. Nature 325, 437-439. Kolb, H., Linberg, K.A., and Fisher, S.K. (1992). Neurons of the human retina: a Golgi study. The Journal of comparative neurology 318, 147-187. Kolb, H., Nelson, R., and Mariani, A. (1981). Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study. Vision research 21, 1081-1114. Kong, J.H., Fish, D.R., Rockhill, R.L., and Masland, R.H. (2005). Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. The Journal of comparative neurology 489, 293-310. Krizaj, D., Gabriel, R., Owen, W.G., and Witkovsky, P. (1998). Dopamine D2 receptor-mediated modulation of rod-cone coupling in the Xenopus retina. The Journal of comparative neurology 398, 529-538. Lasater, E.M., and Dowling, J.E. (1985). Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. Proceedings of the National Academy of Sciences of the United States of America 82, 3025-3029. Lavoie, J., Illiano, P., Sotnikova, T.D., Gainetdinov, R.R., Beaulieu, J.M., and Hebert, M. (2014). The electroretinogram as a biomarker of central dopamine and serotonin: potential relevance to psychiatric disorders. Biological psychiatry 75, 479-486. Lucas, R.J., Freedman, M.S., Munoz, M., Garcia-Fernandez, J.M., and Foster, R.G. (1999). Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science (New York, NY) 284, 505-507. Lucas, R.J., Hattar, S., Takao, M., Berson, D.M., Foster, R.G., and Yau, K.W. (2003). Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science (New York, NY) 299, 245-247. Mariani, A.P. (1990). Amacrine cells of the rhesus monkey retina. The Journal of comparative neurology 301, 382-400. Mora-Ferrer, C., Yazulla, S., Studholme, K.M., and Haak-Frendscho, M. (1999). Dopamine D1-receptor immunolocalization in goldfish retina. The Journal of comparative neurology 411, 705-714. Muller, L.P., Do, M.T., Yau, K.W., He, S., and Baldridge, W.H. (2010). Tracer coupling of intrinsically photosensitive retinal ganglion cells to amacrine cells in the mouse retina. The Journal of comparative neurology 518, 4813-4824. Nakatani, K., Tamura, T., and Yau, K.W. (1991). Light adaptation in retinal rods of the rabbit and two other nonprimate mammals. The Journal of general physiology 97, 413-435. Nguyen-Legros, J., Versaux-Botteri, C., and Vernier, P. (1999). Dopamine receptor localization in the mammalian retina. Molecular neurobiology 19, 181-204. Panda, S., Provencio, I., Tu, D.C., Pires, S.S., Rollag, M.D., Castrucci, A.M., Pletcher, M.T., Sato, T.K., Wiltshire, T., Andahazy, M., et al. (2003). Melanopsin is required for non-image-forming photic responses in blind mice. Science (New York, NY) 301, 525-527. Perlman, I., and Normann, R.A. (1998). Light adaptation and sensitivity controlling mechanisms in vertebrate photoreceptors. Progress in retinal and eye research 17, 523-563. Peterson, B.B., and Dacey, D.M. (1998). Morphology of human retinal ganglion cells with intraretinal axon collaterals. Visual neuroscience 15, 377-387. Porciatti, V., Saleh, M., and Nagaraju, M. (2007). The pattern electroretinogram as a tool to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse model of glaucoma. Investigative ophthalmology & visual science 48, 745-751. Provencio, I., Jiang, G., De Grip, W.J., Hayes, W.P., and Rollag, M.D. (1998). Melanopsin: An opsin in melanophores, brain, and eye. Proceedings of the National Academy of Sciences of the United States of America 95, 340-345. Provencio, I., Rodriguez, I.R., Jiang, G., Hayes, W.P., Moreira, E.F., and Rollag, M.D. (2000). A novel human opsin in the inner retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 600-605. Prusky, G.T., West, P.W., and Douglas, R.M. (2000). Behavioral assessment of visual acuity in mice and rats. Vision research 40, 2201-2209. Reifler, Aaron N., Chervenak, Andrew P., Dolikian, Michael E., Benenati, Brian A., Li, Benjamin Y., Wachter, Rebecca D., Lynch, Andrew M., Demertzis, Zachary D., Meyers, Benjamin S., Abufarha, Fady S., et al. (2015). All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells. Current Biology 25, 2763-2773. Rodieck, R.W. (1973). The vertebrate retina; principles of structure and function (San Francisco: Freeman). Schmidt, T.M., Alam, N.M., Chen, S., Kofuji, P., Li, W., Prusky, G.T., and Hattar, S. (2014). A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron 82, 781-788. Schmidt, T.M., Chen, S.K., and Hattar, S. (2011). Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends in neurosciences 34, 572-580. Sun, W., Li, N., and He, S. (2002). Large-scale morphological survey of mouse retinal ganglion cells. The Journal of comparative neurology 451, 115-126. Tidbury, L.P., Czanner, G., and Newsham, D. (2016). Fiat Lux: the effect of luminance on acuity testing. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 254, 1091-1097. Van Hook, M.J., Wong, K.Y., and Berson, D.M. (2012). Dopaminergic modulation of ganglion-cell photoreceptors in rat. The European journal of neuroscience 35, 507-518. Volgyi, B., Chheda, S., and Bloomfield, S.A. (2009). Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. The Journal of comparative neurology 512, 664-687. Witkovsky, P. (2004). Dopamine and retinal function. Documenta ophthalmologica Advances in ophthalmology 108, 17-40. Wong, K.Y., Dunn, F.A., and Berson, D.M. (2005). Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 48, 1001-1010. Zhang, D.Q., Belenky, M.A., Sollars, P.J., Pickard, G.E., and McMahon, D.G. (2012). Melanopsin mediates retrograde visual signaling in the retina. PloS one 7, e42647. Zhang, D.Q., Wong, K.Y., Sollars, P.J., Berson, D.M., Pickard, G.E., and McMahon, D.G. (2008). Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proceedings of the National Academy of Sciences of the United States of America 105, 14181-14186. Zhang, D.Q., Zhou, T.R., and McMahon, D.G. (2007). Functional heterogeneity of retinal dopaminergic neurons underlying their multiple roles in vision. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 692-699. Zhao, X., Stafford, B.K., Godin, A.L., King, W.M., and Wong, K.Y. (2014). Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells. The Journal of physiology 592, 1619-1636. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49441 | - |
dc.description.abstract | 環境照明度是一個重要的環境信息使我們保持正常的生理功能,但是它對我們視覺的貢獻卻仍在爭論之中。視覺系統曾被認為僅藉由光的對比度變化來完成功能,然而因為近期內生感光視神經的研究,環境亮度的效果被認為會參與其中。內生感光視神經細胞是第三類型的視網膜感光細胞,這些細胞表現感光視黑蛋白,並且將信號傳輸到大腦調控日夜週期,瞳孔反射和睡眠調節。過去的研究根據其形態和細胞體大小將內生感光視神經細胞分成至少五種類型,研究也顯示M1類別內生感光視神經細胞旁支軸突會回到視網膜內叢狀層。此外,我們的免疫染色圖也明確指出自主性感光視神經的旁支軸突可能會與多巴胺中介神經細胞形成突觸。由於多巴胺是在視網膜上影響光適應功能的重要物質,我們認為M1內生感光視神經的旁支軸突也可能通過與多巴胺中介神經細胞的連接而涉及視覺功能運作。我們的研究顯示,M1 自主性感光視神經細胞除了可以檢測背景光度水平並把訊息傳給視交叉上核來調控生理時鐘週期之外,同時也能將訊號傳回內叢狀層的多巴胺中介神經細胞來調節光適應現象,且可能還參與其他複雜的視覺功能運作。 | zh_TW |
dc.description.abstract | Ambient luminance is a vital environmental information for us to maintain our normal physiological function, but its contribution to our visual system is still poorly understood. It has been shown that our visual system primary detect contrast, while the background luminance plays little to no role for pattern forming functions. However, recent evidence has suggested that environment luminance may be involved in vision through intrinsic photosensitive retina ganglion cell (ipRGC), which is the third type of photoreceptor in mouse retina. ipRGCs express melanopsin for light sensing and transmit their signal directly to the brain for circadian photo-entrainment, pupillary light reflex and sleep regulation. Previous studies showed that ipRGCs can be divided into at least five types according to their dendritic morphology and cell body size. Furthermore, recent study showed that M1 type ipRGCs have intra retinal axons collateral innervating retrogradely to the inner plexiform layer (IPL), which could form a putative synapse with dopamine amacrine cells (DACs). Since dopamine is important for the light adaptation, we hypothesize that the M1 ipRGCs may also be involved in visual function through the connection with DACs. Using genetic mouse model and electroretinogram, our study shows that elimination of ipRGCs blocks the light adaptation of cones, while application of D1 or D4 receptor agonist can rescue the light adaptation. Together, our data indicates that ipRGCs could modulate visual function through DACs and probably be involved in higher complicated visual function. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:28:50Z (GMT). No. of bitstreams: 1 ntu-105-R03b21029-1.pdf: 2922241 bytes, checksum: 7d843c73741bb6b159cb910cbc7be56b (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Contents
謝誌 i 中文摘要 iii Abstract v Contents vii Chapter I Introduction 1 1.1 The importance of light adaptation in vision system 1 1.2 The basic circuit and neuron diversity in mouse retina 2 1.3 The investigation in ipRGCs 4 1.4 The contribution of luminance on visual function 6 1.5 The retinal axon collateral from ipRGCs 7 1.6 Research background 9 1.7 Approaching methods 10 1.8 Major finding and physiology meaning 10 Statement of Purpose 12 Chapter II Material and Method 13 2.1 Animals 13 2.2 Electroretinograms 13 2.3 Dopamine rescuing 15 2.4 Immunochemistry 15 2.5 Confocal imaging 16 2.6 Visual water task 16 2.7 Statistics 17 Chapter III Result 18 3.1 IpRGCs are necessary for light adaptation 18 3.2 M1-IpRGCs are sufficient to induce light adaptation 19 3.3 Melanopsin is not required in light adaptation 19 3.4 D1 and D4 dopamine agonists can rescue the light adaptation defect, but not D2 agonist 20 3.5 D1 dopamine agonist can significantly increase the cone a-wave amplitude in Opn4-dta mice. 22 3.6 The melanopsin-driven signals have little effect on the increase of implicit time which was affected by D4 and D2 dopamine agonists. 23 3.7 The Opn4-dta mice have no visual acuity deficit compared to the WT mice both under normal or light adaptation condition. 25 Chapter IV Discussion 27 4.1 The role of ipRGCs in visual function 27 4.2 Dopamine function in the visual system 28 4.3 Other types of ipRGCs are also required in the light adaptation 30 Chapter V Significance of work 32 Chapter VI References 34 Figure 1. Schematic graph of transgenic mouse lines. 40 Figure 2. The schematic graph of Electroretinogram recording. 41 Figure 3. M1 type ipRGCs were eliminated in the Opn4-dta mice. 42 Figure 4. ERG b-wave amplitude increased gradually with the adaptation time in 12 min. 43 Figure 5. The b-wave amplitude remained unchanged in ipRGCs eliminated mice, Opn4-dta compared to the WT mice. 44 Figure 6. M1 ipRGCs are sufficient to induce the increase of b-wave amplitude for light-adaptation in brn3bZdta mice. 45 Figure 7. IpRGCs can induce the increase of b-wave amplitude, even without the photosensitive protein, melanopsin. 46 Figure 8. The b-wave amplitude stands unchanged in WT mice treated with dopamine D4 agonist. 47 Figure 9. Dopamine D4 agonist can induce the b-wave amplitude increase in the lack of M1 ipRGCs. 48 Figure 10. Dopamine D1 agonist can induce the b-wave amplitude increase in the lack of M1 ipRGCs. 49 Figure 11. Dopamine D2 agonist cannot induce the b-wave amplitude increase in the lack of M1 ipRGCs. 50 Figure 12. ERG a-wave ratio (20/2 min) increased in Opn4-dta with SKF38393 compared to WT, Opn4-dta and MKO. 51 Figure 13. The implicit time significantly increased at 20 min in WT and Brn3bZdta but early at 14 min in WT with PD168077 and Opn4-dta with Quinpirole. 52 Figure 14. The Opn4-dta mice have no visual acuity deficit both under normal or light adaptation condition. 53 Figure 15. The schematic model of the cone light adaptation circuit in mouse retinas. 54 Table 1. List of primers for genotyping 55 Table 2. List of dopamine agonists 56 Appendix I. The quadruple immunostaining of M1 ipRGCs’ axon collateral 57 Appendix II. Specific transcriptome search in types of ipRGCs with Next-generation sequence 58 Figure 1. The process of ipRGCs transcriptome search. 65 Figure 2. The horizontal section of un-dehydration and PFA-fixed retinas in Opn4-Cre; ZEG mice 66 Figure 3. The cross section of un-dehydration and PFA-fixed retinas in immuno-labeled mice. 67 Figure 4. The single cell extraction with whole cell patch clamp method. 68 Figure 5. The single cell isolation with NeuroInDx product KuiqpicK™. 69 Figure 6. The comparison of each cell isolation method. 70 Appendix III posters 71 | |
dc.language.iso | en | |
dc.title | 自主性感光視神經細胞藉由旁支軸突調控視網膜多巴胺分泌而影響光適應現象 | zh_TW |
dc.title | M1 intrinsically photosensitive Retinal Ganglion Cells regulate light adaptation through dopamine amacrine cells by intra-retinal axon collateral | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳瑞芬(Ruei-Feng Chen),王致恬(Chih-Tien Wang),焦傳金(Chuan-Chin Chiao) | |
dc.subject.keyword | 神經,視網膜,光適應, | zh_TW |
dc.subject.keyword | ipRGC,Retina,light adaptation, | en |
dc.relation.page | 73 | |
dc.identifier.doi | 10.6342/NTU201602835 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-17 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。