請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49436完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張建成 | |
| dc.contributor.author | Tsung-Yu Yang | en |
| dc.contributor.author | 楊宗祐 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:28:36Z | - |
| dc.date.available | 2020-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-16 | |
| dc.identifier.citation | [1] Y.L.CozandR.Iverson,“Astochasticalgorithmforhighspeedcapacitanceextrac- tion in integrated circuits,” Solid-State Electronics, vol. 35, no. 7, pp. 1005 – 1012, 1992.
[2] J. N. Jere and Y. L. L. Coz, “An improved floating-random-walk algorithm for solving the multi-dielectric Dirichlet problem,” IEEE Transactions on Microwave Theory and Techniques, vol. 41, pp. 325–329, Feb 1993. [3] G.M.Royer,“MonteCarloProcedureforTheoryProblemsPotential,”IEEETrans- actions on Microwave Theory and Techniques, vol. 19, pp. 813–818, Oct 1971. [4] R. B. Iverson and Y. L. L. Coz, “A floating random-walk algorithm for extracting electrical capacitance ,” Mathematics and Computers in Simulation, vol. 55, no. 1– 3, pp. 59 – 66, 2001. The Second {IMACS} Seminar on Monte Carlo Methods. [5] Y. B. Lin, “A New Stochastic Solver for Evaluating the Capacitaces of Complex- Structured Metal-Dielectrics,” Master’s thesis, National Taiwan University, 2015. [6] M.P.Desai,Anefficientcapacitanceextractorusingfloatingrandom.IndianInsitute of Technology, 1998. [7] H. Zhuang, W. Yu, G. Hu, Z. Liu, and Z. Ye, “Fast floating random walk algo- rithm formulti-dielectric capacitance extraction with numerical characterization of Green’s functions,” in 17th Asia and South Pacific Design Automation Confer- ence, pp. 377–382, Jan 2012. [8] W.YuandX.Wang,Advancedfield-solvertechniquesforRCextractionofintegrated circuits. Springer, 2014. [9] M. E. Muller, “Some Continuous Monte Carlo Methods for the Dirichlet Problem,” Ann. Math. Statist., vol. 27, pp. 569–589, 09 1956. [10] J. D. Jackson, Classical electrodynamics. Wiley, 1999. [11] R. Schlott, “A Monte Carlo method for the Dirichlet problem of dielectric wedges,” IEEE Transactions on Microwave Theory Techniques, vol. 36, pp. 724–730, apr 1988. [12] Y. L. L. Coz and R. B. Iverson, “A high-speed capacitance extraction algorithm for multi-level VLSI interconnects,” in VLSI Multilevel Interconnection Conference, 1991, Proceedings., Eighth International IEEE, pp. 364–366, Jun 1991. [13] Y.L.L.CozandR.B.Iverson,“Ahigh-speedmulti-dielectriccapacitance-extraction algorithm for MCM interconnects,” in Multi-Chip Module Conference, 1992. MCMC-92, Proceedings 1992 IEEE, pp. 86–89, Mar 1992. [14] Y. L. Coz, H. Greub, and R. Iverson, “Performance of random-walk capacitance ex- tractors for {IC} interconnects: A numerical study,” Solid-State Electronics, vol. 42, no. 4, pp. 581 – 588, 1998. [15] R. Singh, FastCap: A Multipole Accelerated 3D Capacitance Extraction Program, pp. 34–47. Wiley-IEEE Press, 2002. [16] S. H. Batterywala and M. P. Desai, “Variance reduction in Monte Carlo capacitance extraction,” in 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design, pp. 85–90, Jan 2005. [17] S. H. Kolluru, “Preliminary investigations of a stochastic method to solve elec- torstatic and electrodynamic problems,” Master’s thesis, University of Mas- sachusetts Amherst, 2008. [18] T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, “A capacitance solver for incremen- tal variation-aware extraction,” in 2008 IEEE/ACM International Conference on Computer-Aided Design, pp. 662–669, Nov 2008. [19] T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, “A hierarchical floating random walk algorithm for fabric-aware 3D capacitance extraction,” in 2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Pa- pers, pp. 752–758, Nov 2009. [20] C. Zhang and W. Yu, “Efficient Space Management Techniques for Large-Scale Interconnect Capacitance Extraction With Floating Random Walks,” IEEE Trans- actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, pp. 1633–1637, Oct 2013. [21] W. Yu, H. Zhuang, C. Zhang, G. Hu, and Z. Liu, “RWCap: A Floating Random Walk Solver for 3-D Capacitance Extraction of Very-Large-Scale Integration Inter- connects,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, pp. 353–366, March 2013. [22] R. Burden and J. Faires, Numerical Analysis. Cengage Learning, 2010. [23] P. Moin, Fundamentals of Engineering Numerical Analysis. Cambridge UniversityPress, second ed., 2010. Cambridge Books Online. [24] H. Haus and J. Melcher, Electromagnetic fields and energy. Prentice Hall, 1989. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49436 | - |
| dc.description.abstract | 本研究目的為發展一快速且準確度高,可用於汲取二維及三維多金屬與介電質互連電容的新隨機算法。本文發展之新隨機算法是以方形隨機漫步法為基礎, 結合Chang,C.C. 研究團隊獨創的停留介面法(於Lin,Y.B.的論文中提及),以及Yu文獻中的多層介面格林函數數值特徵化的方法以處理多層電質問題; 而電場積分的方式同樣使用由Chang,C.C.研究團隊獨創的口字型積分法,因其具有高準確度的優勢。
網格大小、重覆次數以及有限差分的網格數目為隨機漫步的主要參數, 但於文獻中較少評估這些參數的影響程度, 因此於本文中加以探討這三個參數對於隨機漫步法的準確度以及計算時間的影響。 結果顯示,參數對於準確度影響按大小依序為網格大小、重覆次數、有限差分的網格數目。網格越小越能清楚捕捉勢能分佈情形,準確度也因此提高;重覆次數達到一定數量即可使計算結果收斂,更多的重覆次數並不能提升準確度;有限差分的網格數目影響甚微,更多的網格數目並不能提升計算的準確度,且會因網格越小或重覆次數越多而越小。最後比較二維與三維模擬結果,並從結果觀察出三維較二維易於收斂,此結果乃是因二維計算點少每個點皆對整體計算結果相當重要,因此需要將每個點經過多次重覆計算,才能得到準確度高的結果,而三維計算點多,因此每個點的重要性相對小,因此僅需少量重覆次數即可達到一定準確度。 總結而論,新隨機算法可用於計算比商用軟體更為複雜的二維及三維結構,且模擬結果準確度已達一定水準,未來,研究之主要課題將朝向優化程式以及平行運算進行。 | zh_TW |
| dc.description.abstract | This study aims at developing a fast and accurate stochastic solver for extracting 2D and 3D multi metal-dielectric interconnect capacitances. The new stochastic solver is fundamentally based on the squared-shaped random walk, combing Stop at Interface method proposed by Chang,C.C. et al. and technique of numerical characterization of Green's function method proposed by Yu in order to solve the multi-dielectric problems. As for the purpose to enhance accuracy, we use a novel square like integration method to calculate the electric field proposed by Chang,C.C. et al.
Factors such as the grid sizes, realizations and the grid points of the finite difference method are three major parameters for the random walk. However, little literature has been published on the issue of evaluating the influence of each parameters. Thus, in this study, it is also illustrated the errors and computation costs by adjusting these three factors. Numerical results show that the grid size has the dominant influence on accuracy, followed by realizations and grid points of finite difference. The smaller the grid size is, the more possibility to capture the potential distribution clearly. Hence, the accuracy have a great improvement. In addition, once the realizations up to a specific value, the computational results converge. It is, therefore indicating the accuracy cannot be improved by more realizations. Further, the grid points of finite difference is proven to have less influence on the accuracy and become even independent with the accuracy when grid size is decreasing of realizations is increasing. In the last part, by comparing the results of 2D and 3D, we discover that it is prone to converge in 3D cases. This is because the 3D simulation has an extra dimension than 2D which implies more realizations superimposing on the model. This is because 2D simulations compute less grid points such that high realizations of each point will lead to accuracy result. In contrast, Therefore, in 3D cases, it is simply using little realizations to achieve high accuracy. To sum up, the proposed new stochastic method can solve more complicated 2D and 3D cases than the commercial software. In addition, the accuracy of the proposed method has been proven to meet up with a specific extent. It is hope to providing an optimized programming with parallel computation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:28:36Z (GMT). No. of bitstreams: 1 ntu-105-R03543030-1.pdf: 15000522 bytes, checksum: 6befffc9f1103d0d70b53e0cf2662c04 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員審定書
誌謝 i 中文摘要 ii 英文摘要 iii 目錄 v 圖目錄 vii 表目錄 xviii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的 7 1.4 全文概述 7 第二章 理論背景與方法 9 2.1 電容矩陣 9 2.2 隨機漫步演算法 11 2.2.1 隨機漫步法求解寄生電容 11 2.2.2 停留介面法 12 2.2.3 多層介面格林函數數值特徵化 15 2.2.4 多層介面格林函數數值特徵化準確性驗證 20 2.3 二維電場積分 22 2.4 三維電場積分 28 2.5 網格生成 37 第三章 二維模擬結果與討論 38 3.1 電容矩陣模擬結果 38 3.1.1 兩金屬導體,單層介電質模擬結果 40 3.1.2 兩金屬導體,兩層介電質模擬結果 47 3.1.3 兩金屬導體,三層介電質模擬結果 54 3.1.4 兩金屬導體,四層介電質模擬結果 61 3.1.5 四金屬導體,單層介電質模擬結果 68 3.1.6 四金屬導體,四層介電質模擬結果 84 3.2 CubicSpline 100 3.3 最大門檻值誤差分析 110 3.4 勢能分析 113 3.5 有限差分誤差分析 117 3.6 複雜結構模擬結果 119 第四章 三維模擬結果與討論 122 4.1 電容矩陣模擬結果 122 4.1.1 兩金屬導體,四層介電質模擬結果 124 4.1.2 四金屬導體,四層介電質模擬結果 128 4.2 勢能分析 139 4.3 有限差分誤差分析 143 4.4 複雜結構模擬結果 146 4.5 比較二維與三維結果 147 第五章 結論與未來展望 149 5.1 結論 149 5.2 未來展望 151 參考文獻 152 | |
| dc.language.iso | zh-TW | |
| dc.subject | 隨機漫步 | zh_TW |
| dc.subject | 互連電容 | zh_TW |
| dc.subject | 停留介面法 | zh_TW |
| dc.subject | 格林函數數值特徵化 | zh_TW |
| dc.subject | Randomwalk | en |
| dc.subject | Interconnect capacitance | en |
| dc.subject | Stop at interface method | en |
| dc.title | 汲取多金屬-介電質互連電容之新隨機算法 | zh_TW |
| dc.title | A New Stochastic Solver for Multi Metal-Dielectric Interconnect Capacitances Extraction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張家歐,朱錦洲,宮春斐 | |
| dc.subject.keyword | 互連電容,隨機漫步,停留介面法,格林函數數值特徵化, | zh_TW |
| dc.subject.keyword | Interconnect capacitance,Randomwalk,Stop at interface method, | en |
| dc.relation.page | 154 | |
| dc.identifier.doi | 10.6342/NTU201602811 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 14.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
