Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49430
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛宇甯
dc.contributor.authorYou-Cheng Chenen
dc.contributor.author陳又誠zh_TW
dc.date.accessioned2021-06-15T11:28:19Z-
dc.date.available2021-08-30
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citationASTM D4015-07. (2007). Standard test methods for modulus and damping of soils by resonant-column method. ASTM International, West Conshohocken, PA, USA.
Axtell, P. J., and Stark, T. D. (2008). Increase in shear modulus by soil mix and jet grout methods. DFI Journal: The Journal of the Deep Foundations Institute, 2(1), 11-21.
Chae, Y. S., and Au, W.-C. (1978). Dynamic shear modulus and damping in additive-treated expansive soils.
Clough, G. W., Sitar, N., Bachus, R. C., and Rad, N. S. (1981). Cemented sands under static loading. Journal of Geotechnical and Geoenvironmental Engineering, 107(ASCE 16319 Proceeding).
Delfosse-Ribay, E., Djeran-Maigre, I., Cabrillac, R., and Gouvenot, D. (2004). Shear modulus and damping ratio of grouted sand. Soil Dynamics and Earthquake Engineering, 24(6), 461-471.
doi: http://dx.doi.org/10.1016/j.soildyn.2004.02.004
Drnevich, V. P., Hardin, B. O., and Shippy, D. J. (1978). Modulus and damping of soils by the resonant-column method. Dynamic Geotechnical Testing. ASTMSTP 654, American Society for Testing and Materials, 91-125.
EuroSoilStab. (2002). Development of design and construction methods to stabilize soft organic soils (Design Guide Soft Soil Stabilization). Brussels CT97-0351.
Fam, M., and Santamarina, J. (1996). Study of clay-cement slurries with mechanical and electromagnetic waves. Journal of Geotechnical Engineering, 122(5), 365-373.
Flores, R. D., Di Emidio, G., and Van Impe, W. F. (2010). Small-strain shear modulus and strength increase of cement-treated clay. Geotechnical Testing Journal, 33(1), 1-10. Retrieved from http://dx.doi.org/10.1520/GTJ102354
Gabrys, K., Sas, W., and Soból, E. (2015). Small-strain dynamic characterization of clayey soil. Acta Scientiarum Polonorum. Architectura, 14(1).
GDS Resonant Column (2010). The GDS Resonant Column System Handbook.
Hardin, B. O., and Drnevich, V. P. (1972). Shear modulus and damping in soils: design equations and curves. Journal of the Soil Mechanics and Foundations Division, 98(7), 667-692.
Hardin, B. O., and Drnevich, V. P. (1972). Shear modulus and damping in soils: measurement and parameter effects. Journal of the Soil Mechanics and Foundations Division, 98(6), 603-624.
Hardin, B.O., and Black W.L. (1968). Vibration modulus of normally consolidated clay. Journal of the Soil Mechanics and Foundations Division, ASCE, 94(2), 353-369.
Helinski, M., Fahey, M., and Fourie, A. (2007). Numerical modeling of cemented mine backfill deposition. Journal of Geotechnical and Geoenvironmental Engineering, 133(10), 1308-1319. doi: 10.1061/(ASCE)1090-0241(2007)133:10(1308)
Horpibulsuk, S., Miura, N., and Nagaraj, T. (2003). Assessment of strength development in cement-admixed high water content clays with Abrams' law as a basis. Geotechnique, 53(4), 439-444.
Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y., and Suddeepong, A. (2010). Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 24(10), 2011-2021. doi: http://dx.doi.org/10.1016/j.conbuildmat.2010.03.011
Hoyos, L., Puppala, A., and Chainuwat, P. (2004). Dynamic properties of chemically stabilized sulfate rich clay. Journal of Geotechnical and Geoenvironmental Engineering, 130(2), 153-162. doi: 10.1061/(ASCE)1090-0241(2004)130:2(153)
Kitazume, M., and Terashi, M. (2013). The deep mixing method. Boca Raton CRC Press.
Kokusho, T., Yoshida, Y., and Esashi, Y. (1982). Dynamic properties of soft clay for wide strain range. SOILS AND FOUNDATIONS, 22(4), 1-18. doi: 10.3208/sandf1972.22.4_1
Liao, T., Massoudi, N., McHood, M., Stokoe, K., Jung, M., and Menq, F. (2013). Normalized shear modulus of compacted gravel. Paper presented at the Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris.
Lu, Y.-T., Tan, T.-S., and Phoon, K.-K. (2011). Use of elevated curing temperature for accelerated testing of cement stabilized dredged Singapore marine clay. Paper presented at the Proc., 2011 Pan-Am CGS Geotechnical Conf.
Massarsch, K. R. (2007). The practical application of seismic testing in geotechnical engineering. Studia Geotechnica et Mechanica, 29(1-2), 121-135.
Mokhtar, M. (2011). Mechanical properties of soft clay stabilized with cement-rice husks (RH). Universiti Tun Hussein Onn Malaysia.
Prusinski, J., and Bhattacharja, S. (1999). Effectiveness of portland cement and lime in stabilizing clay soils. Transportation Research Record: Journal of the Transportation Research Board(1652), 215-227.
Sas, W., and Gabryś, K. (2012). Laboratory measurement of shear stiffness in resonant column apparatus. ACTA Scientiarium Polonorum, series Architectura, 11(4), 29-39.
Sasanian, S., and Newson, T. A. (2014). Basic parameters governing the behaviour of cement-treated clays. SOILS AND FOUNDATIONS, 54(2), 209-224. doi: http://dx.doi.org/10.1016/j.sandf.2014.02.011
Seng, S., and Tanaka, H. (2011). Properties of cement-treated soils during initial curing stages. SOILS AND FOUNDATIONS, 51(5), 775-784. doi: 10.3208/sandf.51.775
Stokoe, K., Darendeli, M., Andrus, R., and Brown, L. (1999). Dynamic soil properties: laboratory, field and correlation studies. Paper presented at the Proc. 2nd Int. Conf. Earthquake Geotech. Engg.
Tan, T., Goh, T., and Yong, K. (2002). Properties of singapore marine clays improved by cement mixing.
Tsai, P.-h., and Ni, S.-h. (2012). Effects of types of additives on dynamic properties of cement stabilized soils.
Vucetic, M., and Dobry, R. (1991). Effect of Soil Plasticity on Cyclic Response. Journal of Geotechnical Engineering, 117(1), 89-107. doi: 10.1061/(ASCE)0733-9410(1991)117:1(89)
Yang, F. (2013). Experimental study on small-strain dynamic properties of cemented soil (in Chinese). Industrial Construction, 43(4), 102-106.
Yang, L., and Woods, R. D. (2011). Modeling of dynamic properties of cemented clay. Paper presented at the Proc., 2011 Pan-Am CGS Geotechnical Conf.
Yang, L., and Woods, R. D. (2014). Shear stiffness modeling of cemented clay. Canadian Geotechnical Journal, 52(2), 156-166.
Zavoral, D. (1990). Dynamic properties of an undisturbed clay from resonant column tests (T). University of British Columbia. Retrieved from https://open.library.ubc.ca/cIRcle/collections/831/items/1.0062631 (Original work published 1990)
Zhang, J., Andrus, R. D., and Juang, C. H. (2005). Normalized shear modulus and material damping ratio relationships. Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 453-464.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49430-
dc.description.abstract當土木工程在軟弱地盤上施工時,通常會使用地盤改良工法來增加土層之強度與勁度,灌漿工法便是一種常採用之改良工法,通常使用水泥以漿體的形式注入土層中,藉由水泥之遇水產生硬化,提升改良區域之強度並減少可施工時的沉陷量,近年來,會適量地在水泥中加入高爐石與飛灰等卜作蘭材料,減少水泥之用量以及避免高爐石與飛灰此類工業副產物的廢棄而造成之環境汙染問題。
本研究使用將三種不同之爐石水泥含量(C/S ratio = 15%、20%、25%)配以三種不同之黏土含水量(ω = 1.8LL、2.0LL、2.2LL)與高嶺土混合,爐石水泥含量之定義為乾爐石水泥與乾黏土之重量比,而含水量部分則是1.8、2.0、2.2倍之黏土液性限度,以此模擬軟弱土壤的狀態。試體尺寸為直徑7公分以及高度15公分,所有試體在養護7、14、28、56天之後進行共振柱試驗以量測不同養護時間時的動態性質,進行共振柱試驗時會採用80、160、320 kPa等三種不同之圍壓,觀察不同圍壓下動態性質的變化。
實驗結果顯示,本研究之改良黏土之剪應變範圍在10-5 % 到 10-2 % 之間,而門檻剪應變在10-4 % 到 10-3 % 之間。圍壓與爐石水泥含量的提昇以及含水量的減少會使得剪力模數增加,然而在阻尼比方面,圍壓、水泥含量以及含水的影響則不明顯,此外,隨著養護天數的增加,剪力模數會提升而阻尼比會下降。由此可知,土壤之勁度會因為添加爐石水泥而產生勁度增加的效果,因此,本研究所使用之爐石水泥為一種有效的地盤改良材料。
zh_TW
dc.description.abstractBecause of its low strength, soft ground is usually improved to increase strength stability and decrease settlement. Grouting is one of the ground improvement method, which adds reinforcing materials into ground. Portland cement is a common material to be used for soft ground improvement. In addition, some additives have been used to replace part of the cement due to their economic and environmental advantages, such as slag and fly ash.
In this study, the Kaolinite and slag cement were obtained in dry powder initially. Engineering properties of this clay including specific gravity, liquid limit, and plastic limit were examined first. Afterwards, the clay was mixed with different amount of slag cement and water. The clay water content, ω, is defined as the weight of water in clay to dry weight of kaolinite. The slag-cement content is defined as the dry weight of slag cement to dry weight of kaolinite, which is written as C/S ratio. Three different C/S ratios and three different clay water contents were used.
The resonant column tests with three different confining pressures were carried out in this study. The specimen size is 7 cm in diameter and 15 cm in height. All the specimens in this research are tested at curing time of 7, 14, 28, and 56 days. The effect of shear strain, confining pressure, cement content, water content and curing time on shear modulus and damping ratio of stabilized clay were discussed.
The range of shear strain is from 10-5 % to 10-2 % with the threshold shear strain ranging from 10-4 % to 10-3 %. The shear modulus increases slightly with increasing confining pressure. However, confining pressure has a little influence on damping ratios. The shear modulus increases with increasing in slag-cement content but decreases with increasing in water content. On the other hand, the effect of slag-cement content and water content on damping ratio is not apparent. After curing, the maximum shear moduli increase and the minimum damping ratios decrease. Thus, the stiffness of stabilized clays enhance. As a result, the slag cement used in this study is an effective material in ground improvement.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:28:19Z (GMT). No. of bitstreams: 1
ntu-105-R03521106-1.pdf: 7555297 bytes, checksum: 0f635c5ad641072a3493207b9b0576ba (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsTable of Contents
口試委員審定書 I
致謝 II
摘要 III
Abstract IV
List of Tables IX
List of Figures X
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation and Object 1
1.3 Methodology 2
1.4 Outline 2
Chapter 2 Literature Review 3
2.1 Dynamic Properties of Cement Stabilized Soils 3
2.1.1 Effect of Confining Pressure 4
2.1.2 Effect of Shear Strain 6
2.1.3 Effect of Moisture Content 8
2.1.4 Effect of Cement Content 9
2.2 Reactions between Cement and Soft Clay 13
2.3 Theory of Resonant Column Test 16
2.3.1 Resonant-Column System 16
2.3.2 Shear Modulus 17
2.3.3 Damping Ratio 18
2.3.4 Shear Strain 19
Chapter 3 Experimental Program 23
3.1 Materials 23
3.1.1 Kaolinite 23
3.1.2 Slag Cement 23
3.2 Resonant Column Apparatus 26
3.3 Specimen Preparation 30
3.4 Resonant Column Test 34
Chapter 4 Test Results and Discussion 41
4.1 Dynamic Properties and Shear Strains Relationships 41
4.2 Effect of Confining Pressure 53
4.3 Effect of Slag-Cement Content and Water Content 65
4.4 Effect of Curing Time 68
Chapter 5 Conclusions and Suggestions 72
5.1 Conclusions 72
5.2 Suggestions 73
References 75
Appendix A Other Test Results 81
dc.language.isoen
dc.subject阻尼比zh_TW
dc.subject爐石水泥改良高嶺土zh_TW
dc.subject共振柱試驗zh_TW
dc.subject剪力模數zh_TW
dc.subjectslag cement stabilized clayen
dc.subjectdamping ratioen
dc.subjectshear modulusen
dc.subjectresonant column testen
dc.title爐石水泥改良高嶺土之動態性質zh_TW
dc.titleDynamic Properties of Slag Cement Stabilized Kaoliniteen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖文正,蔡祁欽
dc.subject.keyword爐石水泥改良高嶺土,共振柱試驗,剪力模數,阻尼比,zh_TW
dc.subject.keywordslag cement stabilized clay,resonant column test,shear modulus,damping ratio,en
dc.relation.page111
dc.identifier.doi10.6342/NTU201602673
dc.rights.note有償授權
dc.date.accepted2016-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
7.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved