請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49422完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張明富 | |
| dc.contributor.author | Yu-Pin Yeh | en |
| dc.contributor.author | 葉妤玢 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:27:57Z | - |
| dc.date.available | 2021-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-18 | |
| dc.identifier.citation | 1. Kindler, E., H.R. Jonsdottir, D. Muth, O.J. Hamming, R. Hartmann, R. Rodriguez, R. Geffers, R.A. Fouchier, C. Drosten, M.A. Muller, R. Dijkman, and V. Thiel, Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential. MBio, 2013. 4: p. e00611-12.
2. WHO, Middle East respiratory syndrome coronavirus (MERS-CoV) — Republic of Korea. 2015: http://www.who.int/csr/don/30-may-2015-mers-korea/en/. 3. Assiri, A., J.A. Al-Tawfiq, A.A. Al-Rabeeah, F.A. Al-Rabiah, S. Al-Hajjar, A. Al-Barrak, H. Flemban, W.N. Al-Nassir, H.H. Balkhy, R.F. Al-Hakeem, H.Q. Makhdoom, A.I. Zumla, and Z.A. Memish, Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis, 2013. 13: p. 752-761. 4. Zumla, A., D.S. Hui, and S. Perlman, Middle East respiratory syndrome. Lancet Infect Dis, 2015. 386: p. 995-1007. 5. MOHW-CDC. Middle East Respiratory Syndrome (MERS). 2015; Available from: http://www.cdc.gov.tw/professional/MERS_CoV 6. van Boheemen, S., M. de Graaf, C. Lauber, T.M. Bestebroer, V.S. Raj, A.M. Zaki, A.D. Osterhaus, B.L. Haagmans, A.E. Gorbalenya, E.J. Snijder, and R.A. Fouchier, Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio, 2012. 3: p. e00473-12. 7. Chan, J.F., S.K. Lau, K.K. To, V.C. Cheng, P.C. Woo, and K.Y. Yuen, Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev, 2015. 28: p. 465-522. 8. Chan, J.F., K.S. Li, K.K. To, V.C. Cheng, H. Chen, and K.Y. Yuen, Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? J Infect, 2012. 65: p. 477-89. 9. Ge, X.Y., J.L. Li, X.L. Yang, A.A. Chmura, G. Zhu, J.H. Epstein, J.K. Mazet, B. Hu, W. Zhang, C. Peng, Y.J. Zhang, C.M. Luo, B. Tan, N. Wang, Y. Zhu, G. Crameri, S.Y. Zhang, L.F. Wang, P. Daszak, and Z.L. Shi, Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 2013. 503: p. 535-8. 10. Reusken, C.B.E.M., B.L. Haagmans, M.A. Muller, C. Gutierrez, G.-J. Godeke, B. Meyer, D. Muth, V.S. Raj, L.S.-D. Vries, V.M. Corman, J.-F. Drexler, S.L. Smits, Y.E. El Tahir, R. De Sousa, J. van Beek, N. Nowotny, K. van Maanen, E. Hidalgo-Hermoso, B.-J. Bosch, P. Rottier, A. Osterhaus, C. Gortazar-Schmidt, C. Drosten, and M.P.G. Koopmans, Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis, 2013. 13: p. 859-866. 11. Zhang, N., S. Jiang, and L. Du, Current advancements and potential strategies in the development of MERS-CoV vaccines. Expert Rev Vaccines, 2014. 13: p. 761-74. 12. Scobey, T., B.L. Yount, A.C. Sims, E.F. Donaldson, S.S. Agnihothram, V.D. Menachery, R.L. Graham, J. Swanstrom, P.F. Bove, J.D. Kim, S. Grego, S.H. Randell, and R.S. Baric, Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. PNAS, 2013. 110: p. 16157-62. 13. Lu, G., Y. Hu, Q. Wang, J. Qi, F. Gao, Y. Li, Y. Zhang, W. Zhang, Y. Yuan, J. Bao, B. Zhang, Y. Shi, J. Yan, and G.F. Gao, Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature, 2013. 500: p. 227-31. 14. Raj, V.S., H. Mou, S.L. Smits, D.H. Dekkers, M.A. Muller, R. Dijkman, D. Muth, J.A. Demmers, A. Zaki, R.A. Fouchier, V. Thiel, C. Drosten, P.J. Rottier, A.D. Osterhaus, B.J. Bosch, and B.L. Haagmans, Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013. 495: p. 251-4. 15. Du, L., W. Tai, Y. Zhou, and S. Jiang, Vaccines for the prevention against the threat of MERS-CoV. Expert Rev Vaccines, 2016. 15: p. 1-12. 16. Ma, C., L. Wang, X. Tao, N. Zhang, Y. Yang, C.T. Tseng, F. Li, Y. Zhou, S. Jiang, and L. Du, Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments--the importance of immunofocusing in subunit vaccine design. Vaccine, 2014. 32: p. 6170-6. 17. White, J.M., S.E. Delos, M. Brecher, and K. Schornberg, Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol, 2008. 43: p. 189-219. 18. Lu, L., Q. Liu, Y. Zhu, K.H. Chan, L. Qin, Y. Li, Q. Wang, J.F. Chan, L. Du, F. Yu, C. Ma, S. Ye, K.Y. Yuen, R. Zhang, and S. Jiang, Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun, 2014. 5: p. 3067-78. 19. Du, L., G. Zhao, Y. Yang, H. Qiu, L. Wang, Z. Kou, X. Tao, H. Yu, S. Sun, C.T. Tseng, S. Jiang, F. Li, and Y. Zhou, A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein. J Virol, 2014. 88: p. 7045-53. 20. Song, F., R. Fux, L.B. Provacia, A. Volz, M. Eickmann, S. Becker, A.D. Osterhaus, B.L. Haagmans, and G. Sutter, Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies. J Virol, 2013. 87: p. 11950-4. 21. Surya, W., Y. Li, C. Verdia-Baguena, V.M. Aguilella, and J. Torres, MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels. Virus Res, 2015. 201: p. 61-6. 22. Hurst, K.R., R. Ye, S.J. Goebel, P. Jayaraman, and P.S. Masters, An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA. J Virol, 2010. 84: p. 10276-88. 23. Almazan, F., M.L. DeDiego, I. Sola, S. Zuniga, J.L. Nieto-Torres, S. Marquez-Jurado, G. Andres, and L. Enjuanes, Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. MBio, 2013. 4: p. e00650-13. 24. Yang, Y., L. Zhang, H. Geng, Y. Deng, B. Huang, Y. Guo, Z. Zhao, and W. Tan, The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell, 2013. 4: p. 951-61. 25. Perlman, S. and J. Netland, Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol, 2009. 7: p. 439-50. 26. Harry Vennemal, G.-J.G., John W.A.Rossen, Wim F.Voorhout, Marian C.Horzinek, Dirk-Jan E.Opstelten and Peter J.M.Rottier, Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO, 1996. 15: p. 2020-28. 27. Emily Corse, C.E., Infectious Bronchitis Virus E Protein Is Targeted to the Golgi Complex and Directs Release of Virus-Like Particles. J Virol, 2000. 74: p. 4319-26. 28. Hsieh, P.K., S.C. Chang, C.C. Huang, T.T. Lee, C.W. Hsiao, Y.H. Kou, I.Y. Chen, C.K. Chang, T.H. Huang, and M.F. Chang, Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J Virol, 2005. 79: p. 13848-55. 29. Cornelis A. M. DE Haan, L.K., Paul S. Masters, Harry Vennema, Peter J. M. Rottier, Coronavirus Particle Assembly: Primary Structure Requirements of the Membrane Protein. J Virol, 1998. 72: p. 6838 - 50. 30. Martin J. B. Raamsman, J.K.L., Alphons DE Hooge, Antoine A. F. DE Vries, Gareth, Harry Vennema, Peter J. M. Rottier, Characterization of the Coronavirus Mouse Hepatitis Virus Strain A59 Small Membrane Protein E. J Virol, 2000. 74: p. 2333-42. 31. Chong Wang, X.Z., Weiwei Gai, Yongkun Zhao, Hualei Wang, Haijun Wang, Na Feng, Hang Chi, Boning Qiu, Nan Li, Tiecheng Wang, Yuwei Gao, Songtao Yang, Xianzhu Xia, MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques. Oncotarget, 2016: p. 1-9. 32. Rodriguez-Limas, W.A., K. Sekar, and K.E. Tyo, Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Curr Opin Biotechnol, 2013. 24: p. 1089-93. 33. Noad, R. and P. Roy, Virus-like particles as immunogens. Trends in Microbiology, 2003. 11: p. 438-44. 34. Wang, L., W. Shi, M.G. Joyce, K. Modjarrad, Y. Zhang, K. Leung, C.R. Lees, T. Zhou, H.M. Yassine, M. Kanekiyo, Z.Y. Yang, X. Chen, M.M. Becker, M. Freeman, L. Vogel, J.C. Johnson, G. Olinger, J.P. Todd, U. Bagci, J. Solomon, D.J. Mollura, L. Hensley, P. Jahrling, M.R. Denison, S.S. Rao, K. Subbarao, P.D. Kwong, J.R. Mascola, W.P. Kong, and B.S. Graham, Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun, 2015. 6: p. 7712-22. 35. Murata, K., M. Lechmann, M. Qiao, T. Gunji, H.J. Alter, and T.J. Liang, Immunization with hepatitis C virus-like particles protects mice from recombinant hepatitis C virus-vaccinia infection. PNAS, 2003. 100: p. 6753-8. 36. T. J. French, J.J.A.M., P. Roy, Assembly of Double-Shelled, Viruslike Particles of Bluetongue Virus by the Simultaneous Expression of Four Structural Proteins. J Virol, 1990. 64: p. 5696-700. 37. Ott, J.J., G.A. Stevens, J. Groeger, and S.T. Wiersma, Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine, 2012. 30: p. 2212-9. 38. De Vuyst, H., G.M. Clifford, M.C. Nascimento, M.M. Madeleine, and S. Franceschi, Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: a meta-analysis. Int J Cancer, 2009. 124: p. 1626-36. 39. Coleman, C.M., Y.V. Liu, H. Mu, J.K. Taylor, M. Massare, D.C. Flyer, G.M. Glenn, G.E. Smith, and M.B. Frieman, Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine, 2014. 32: p. 3169-74. 40. Heidcamp, W.H. Cell Biology Laboratory Manual-Density and refractive indexes of sucrose. Available from: http://homepages.gac.edu/~cellab/chpts/chpt3/table3-2.html. 41. Cheng Huang, C.J.P., and Shinji Makino, Severe Acute Respiratory Syndrome Coronavirus Accessory Protein 6 Is a Virion-Associated Protein and Is Released from 6 Protein-Expressing Cells. J Virol, 2007. 81: p. 5423-26. 42. Cai, Y., S.Q. Yu, E.N. Postnikova, S. Mazur, J.G. Bernbaum, R. Burk, T. Zhang, and M.A.M. S.R. Radoshitzky, I. Jordan, L. Bollinger, L.E. Hensley, P.B. Jahrling, J.H. Kuhn., CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection. . PLoS One, 2014. 9: p. e112060. 43. Gale E. Smith, M.D.S., M. J. Fraser, Production of Human Beta Interferon in Insect Cells Infected with a Baculovirus Expression Vector. MBio, 1983. 3: p. 2156-65. 44. Donald L. Jarvis, M.D.S., Glycosylation and Secretion of Human Tissue Plasminogen Activator in Recombinant Baculovirus-Infected Insect Cells. MBio, 1989. 9: p. 214-23. 45. Thomas F. Baumert, S.I., David T, Wong, Jake Liang, Hepatitis C Virus Structural Proteins Assemble into Virus like Particles in Insect Cells. J Virol, 1998. 72: p. 3827-36. 46. Mortola, E. and P. Roy, Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett, 2004. 576: p. 174-8. 47. Kost, T.A., J.P. Condreay, and D.L. Jarvis, Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol, 2005. 23: p. 567-75. 48. Tsang L. Lin, C.C.L., Shih C. Tsai, Ching C. Wu, and H.L.T. Tom A. Bryan, Tom Hooper, Donna Schrader, Characterization of turkey coronavirus from turkey poults with acute enteritis. Veterinary Microbiology, 2002. 84: p. 179-86. 49. Wang, C., X. Zheng, W. Gai, Y. Zhao, H. Wang, H. Wang, N. Feng, H. Chi, B. Qiu, N. Li, T. Wang, Y. Gao, S. Yang, and X. Xia, MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques. 2016: p. 1-9. 50. Dixit, R., J. Herz, R. Dalton, and R. Booy, Benefits of using heterologous polyclonal antibodies and potential applications to new and undertreated infectious pathogens. Vaccine, 2016. 34: p. 1152-61. 51. Zhao, J., R.A. Perera, G. Kayali, D. Meyerholz, S. Perlman, and M. Peiris, Passive immunotherapy with dromedary immune serum in an experimental animal model for Middle East respiratory syndrome coronavirus infection. J Virol, 2015. 89: p. 6117-20. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49422 | - |
| dc.description.abstract | 中東呼吸道症候群冠狀病毒 (Middle East respiratory syndrome coronavirus;MERS-CoV) 是於2012年的沙烏地阿拉伯地區首度被發現引起新的呼吸道疾病。隨著至中東旅遊的人數增加,此病毒也傳播至歐洲、亞洲、非洲及北美洲。截至今年的六月為止已經有1733名確診的案例,其中有628名患者死亡,死亡率高達36%,較致死率約9.6%的嚴重呼吸道症候群 (Severe acute respiratory syndrome;SARS) 更為嚴重。MERS-CoV是一具有單股正向RNA基因體的病毒,其結構蛋白質有spike、envelope、membrane及nucleocapsid。當MERS-CoV感染宿主細胞時,會利用外圍突起之Spike與宿主細胞表面的dipeptidyl peptidase 4 (DPP4) 結合,使細胞膜融合促使病毒得以進入細胞內。至目前為止,並沒有任何專一性的藥物及疫苗能夠治療MERS,多半是給予患者輔助性之療法。為了發展MERS-CoV疫苗,因此本研究利用昆蟲細胞同時表現MERS-CoV的三種結構蛋白質,分別為spike、envelope及membrane,進而組裝成MERS virus-like particles (MERS-VLPs)。藉由穿透式電子顯微鏡能夠觀察到形成的MERS-VLPs為直徑約100 nm之圓形顆粒,並且有類似Spike之棘狀突起。另外在免疫螢光染色的結果顯示MERS-VLPs與其受器DPP4有共位 (co-localization) 之情形,進一步證明所組裝之VLPs具有其病毒特性,且有spike蛋白質鑲嵌於膜外。由於VLPs能夠模擬病毒在真實環境下的結構,不具有複製能力且感染性低等優點,本篇研究利用MERS-VLPs作為抗原施打於BALB/c小鼠,結果證實MERS-VLPs可以使小鼠發生免疫反應而產生中和性抗體。未來可以利用MERS-VLPs產生humanized之抗體,希望能以被動免疫療法用於治療MERS。 | zh_TW |
| dc.description.abstract | The Middle East respiratory syndrome coronavirus (MERS-CoV) was initially identified in the Kingdom of Saudi Arabia in September 2012. The transmission of MERS-CoV have been reported from countries in Europe, Asia, Africa, and North-America. MERS-CoV has caused 1733 laboratory confirmed cases till June 2016 with a case-fatality rate of 36% which is much higher than the 9.6% mortality rate caused by severe acute respiratory syndrome coronavirus. MERS-CoV is a positive single-strand RNA virus, with structural proteins includes spike, membrane, envelope and nucleocapsid protein. MERS-CoV uses dipeptidyl peptidase 4 (DPP4) as its functional receptor. The spike protein initiates virus entry by binding to DPP4, the binding leads to membrane fusion. To date, no drugs and vaccines have been clinically approved to control MERS-CoV infection. One of the most promising tools in vaccine development over the last two decades is the use of recombinant-based virus-like particles (VLPs). VLPs are multiprotein structures closely resembling natural virions. VLPs that lack viral genetic materials are non-infectious and non-replicating particles. On the other hand, VLPs display intact and biochemically active antigens on their surface and thus, show high immunogenicity and antigenicity. Importantly, VLPs interact with the host immune system inducing humoral and cellular responses similarly to the native pathogens.
In order to generate MERS-VLPs, high five cells were co-infected with recombinant baculoviruses expressing the viral structural proteins spike, envelope, and membrane. MERS-VLPs were harvested and purified by sucrose gradient centrifugation. Transmission electron microscopy detected the MERS-VLPs with diameters approximately 100 nm, and spike protein appeared around the spherical particles. Immunofluorescence assay demonstrated colocalization of the spike-incorporated VLPs with DPP4. In addition, BALB/c mice were vaccinated with the partially purified MERS-VLPs. MERS-VLPs induced host immune response and generated neutralizing antibodies. In the future, humanized antibodies could be generated as a promising passive immunotherapy for MERS. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:27:57Z (GMT). No. of bitstreams: 1 ntu-105-R03442024-1.pdf: 2656600 bytes, checksum: e13ed7ba965a1bf6720b754f3349b675 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 II 縮寫表 IV 第一章 緒論 1 第二章 研究主題 10 第三章 材料來源 11 第四章 實驗方法 15 第五章 實驗結果 26 第六章 討論 30 第七章 圖表 33 附錄 43 參考文獻 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 中東呼吸道症候群 | zh_TW |
| dc.subject | 中和性抗體 | zh_TW |
| dc.subject | 類病毒顆粒 | zh_TW |
| dc.subject | neutralizing antibodies | en |
| dc.subject | Virus-like particles | en |
| dc.subject | MERS-CoV | en |
| dc.title | 建構MERS-CoV類病毒顆粒以誘使BALB/c小鼠產生中和性抗體 | zh_TW |
| dc.title | Generation of MERS-CoV virus-like particles to induce neutralizing antibodies in BALB/c mice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊榮輝,張富雄,王萬波 | |
| dc.subject.keyword | 中東呼吸道症候群,類病毒顆粒,中和性抗體, | zh_TW |
| dc.subject.keyword | MERS-CoV,Virus-like particles,neutralizing antibodies, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU201603168 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
