請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49390
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖婉君 | |
dc.contributor.author | Bo-Syuan Huang | en |
dc.contributor.author | 黃柏璇 | zh_TW |
dc.date.accessioned | 2021-06-15T11:26:31Z | - |
dc.date.available | 2019-10-26 | |
dc.date.copyright | 2016-10-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-17 | |
dc.identifier.citation | [1] China Mobile Research Institute(2014,June) C-RAN: The road towards green RAN (version 3.0). [Online]. Available: http://labs.chinamobile.com/cran/wp- content/uploads/2014/06/20140613- C- RAN- WP- 3.0.pdf
[2] Checko, A.; Christiansen, H.L.; Ying Yan et al., 'Cloud RAN for Mobile Networks—A Technology Overview,' IEEE Communications Surveys & Tutorials, vol.17, no.1, pp.405,426, First quarter 2015 [3] “CPRI specification v6.0: Interface specification,” 2013. [4] L. Zhou and W. Yu, “Uplink multicell processing with limited backhaul via per-base-station successive interference cancellation,” IEEE J. Sel. Areas Commun., vol. 30, no. 10, pp. 1981-1993, Oct. 2013. [5] B. Dai and W. Yu, “Sparse beamforming and user-centric clustering for downlink cloud radio access network,” IEEE Access, vol. 2, pp. 1326-1339, 2014. [6] L. Liu and R. Zhang, 'Downlink SINR balancing in C-RAN under limited fronthaul capacity,' 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016, pp. 3506-3510. [7] V. Ha; L. Le; N. D. Dao, 'Coordinated Multipoint (CoMP) Transmission Design for Cloud-RANs with Limited Fronthaul Capacity Constraints,' in IEEE Transactions on Vehicular Technology(2015), no.99, pp.1-1 [8] V. N. Ha and L. B. Le, 'Cooperative transmission in cloud RAN considering fronthaul capacity and cloud processing constraints,' 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, 2014, pp. 1862-1867. [9] J. Liu, T. Zhao, S. Zhou, Y. Cheng, and Z. Niu, “CONCERT: A cloud- based architecture for next- generation cellular systems,” IEEE Wireless Communications, 2014, Accepted. [10] J. Liu, S. Zhou, J. Gong, Z. Niu and S. Xu, 'Graph-based framework for flexible baseband function splitting and placement in C-RAN,' 2015 IEEE International Conference on Communications (ICC), London, 2015, pp. 1958-1963. [11] A. Maeder et al., 'Towards a flexible functional split for cloud-RAN networks,' 2014 European Conference on Networks and Communications (EuCNC), Bologna, 2014, pp. 1-5. [12] W. Zhao; S. Wang; C. Wang; X. Wu, 'Approximation Algorithms for Cell Planning in Heterogeneous Networks,' in IEEE Transactions on Vehicular Technology, 2016, no.99, pp.1-1 [13] J. Košmerl and A. Vilhar, 'Base stations placement optimization in wireless networks for emergency communications,' 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, NSW, 2014, pp. 200-205. [14] L. Zhou et al., 'Green small cell planning in smart cities under dynamic traffic demand,' 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Hong Kong, 2015, pp. 618-623. [15] K. Tutschku, N. Gerlich, and P. Tran-Gia, “An Integrated Approach to Cellular Network Planning,” in Proc. of the 7th International Network Planning Symposium, Sydney, 1996, pp. 185– 190. [16] Tamara Stern, “Seminar in Theoretical Computer Science”, Chapter 2.1, 12, http://math.mit.edu/~goemans/18434S06/setcover-tamara.pdf [17] D. Amzallag, M. Livschitz, J. Naor and D. Raz, 'Cell Planning of 4G Cellular Networks: Algorithmic Techniques and Results,' 3G and Beyond, 2005 6th IEE International Conference on, Washington, DC, 2005, pp. 1-5. [18] 3GPP TR 25.942 v2.1.3, “3rd Generation Partnership Project; Technical Specification Group (TSG) RAN WG4; RF System Scenarios,” 2000 [19] V. Suryaprakash, P. Rost and G. Fettweis, 'Are Heterogeneous Cloud-Based Radio Access Networks Cost Effective?,' in IEEE Journal on Selected Areas in Communications, vol. 33, no. 10, pp. 2239-2251, Oct. 2015. [20] U. Dotsch et al., “Quantitative Analysis of Split Base Station Processing and Determination of Advantageous Architectures for LTE,” Bell Labs Tech. J., vol. 18, no. 1, May 2013, pp. 105–28. [21] V. Chvatal, “A Greedy Heuristic for the Set-Covering Problem”, School of Computer Science, McGill University, Montreal, Canada, Mathematics of Operations Research 19794:3, 233-235 [22] Ericsson, “Cloud RAN: the benefits of virtualization, centralization and coordination”, white paper, 2015 [23] C. L. I, C. Rowell, S. Han, Z. Xu, G. Li and Z. Pan, 'Toward green and soft: a 5G perspective,' in IEEE Communications Magazine, vol. 52, no. 2, pp. 66-73, February 2014. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49390 | - |
dc.description.abstract | 在第四代行動通訊演進漸趨成熟之下,學界業界紛紛開始尋求下一代行動通訊的新技術以 支撐未來爆量的需求。雲端無線接取網路 (C-RAN) 被視為一個相當有前景的解決方案,由集 中基頻運算池 (BBU pool) 、無線寬頻頭端設備 (RRH) 和前端回程網路 (Fronthaul) 所組成。然 而,雲端無線接取網路對於前端回程網路的頻寬需求極大,若是前端回程網路無法負荷集中基 頻運算池和無線寬頻頭端設備之間的基頻資料,則會對雲端無線接取網路的表現有嚴重的影響, 而目前所知的資料壓縮技術並無法有效率地解決這個問題。
根據集中基頻運算池和無線寬頻頭端設備之間的不同運算功能的切分與擺放,常見的模式 有兩種:完全集中以及部分集中,完全集中是把所有的運算功能都放到集中基頻運算池內,而 部分集中則是把第一層基頻運算功能留在無線寬頻頭端設備上。兩者相比,所需的前端回程網 路頻寬可以相差到 20 到 50 倍之多。 所以,這篇論文的目標是提出一種彈性的雲端無線接取網路架構,此架構中含有兩種不同 集中程度的無線寬頻頭端設備,類似前面所提到的完全集中以及部分集中。我們的問題是要在 眾多的候選地點中選出一群子集來分別佈建這兩種無線寬頻頭端設備,並考量通道容量有限的 前端回程網路的限制以及根據平均的使用者的需求決定要怎麼連接及怎麼佈建。原問題的複雜 度相當高,所以我們接著依照此問題的特性提出一個低複雜度的貪心演算法,透過演算法證明 這個架構的表現確實優於其他兩種基準架構(完全集中和部分集中),以及不同的無線寬頻頭 端設備有各自適合的使用情境。 | zh_TW |
dc.description.abstract | As the deployment and commercial operation of 4G systems are speeding up, technologists worldwide have begun searching for next generation wireless solutions. Cloud radio access networks (C-RAN), which is composed of three main components: BBU pool, fronthaul and RRH, has been thought of as a promising solution. However, the massive fronthaul bandwidth required to aggregate baseband samples from RRH to BBU pool has a significant impact on the performance of C-RAN and existing baseband compression algorithms can hardly solve this issue.
According to different function splitting and placing between BBU pool and RRH, there are two kinds of C-RAN solutions: one is called “full centralization”, where layer 1 functions and beyond are located in BBU pool; the other is called “partial centralization” or “flexible C-RAN”, where the RRH integrates not only the radio function but also some of the baseband functions (e.g. L1 functions), while all other higher layer functions are still located in the BBU pool. Compared with the “fully centralization”, the RRH-BBU pool connection of “partially centralization” only need to carry demodulated data, which is only 1/20~1/50 of the original baseband I/Q sample data. So, our target of this work is to propose that a new flexible C-RAN architecture that there are two types of RRHs with different degree of centralization. Both of them have different pros and cons. We want to select a subset of candidate sites to install these two types of RRHs and to assign demand nodes to the available one taking into account the traffic demand, deployment costs and limited fronthaul capacity. Because the original problem is extremely complicated, we proposed a greedy algorithm with low complexity and small computation time to solve the problem sub-optimally. Then, we run simulation to show that our proposed algorithm performs well then other two benchmark schemes and through the simulation, we figure out some idea about different type of RRH are suitable for some special cases. To the best of our knowledge, we are the first article proposed this architecture and discussing about how the deployment should be in the flexible C-RAN. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:26:31Z (GMT). No. of bitstreams: 1 ntu-105-R03942119-1.pdf: 1767422 bytes, checksum: 47f211fceb897563af3e277b9afd2caf (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書 #
致謝 I 摘要 II Abstract III Contents V List of Figures VII List of Tables IX Chapter 1 Introduction 1 1.1 Cloud Radio Access Networks (C-RAN) 1 1.2 Limited Fronthaul Capacity 4 1.3 Flexible C-RAN and Partially Centralized C-RAN 5 1.4 Base Station Deployment 8 1.5 Organization of Thesis 9 Chapter 2 System Model 10 2.1 Traffic Model 10 2.2 RRH model 10 2.3 System model 12 Chapter3 RRH Deployment in Flexible C-RAN 14 3.1 Problem Description 14 3.2 Problem Formulation 15 3.3 Problem Analysis 19 3.4 Algorithm Design Principles 20 3.5 Heuristic Algorithm 25 Chapter4 Simulation Results 30 4.1 Simulation Settings 30 4.2 Simulation Results 32 Chapter5 Conclusions 41 Chapter6 Future Works 42 Reference 43 | |
dc.language.iso | en | |
dc.title | 在彈性雲端無線接取網路中佈建無線寬頻頭端設備考量通道容量有限的前端回程網路 | zh_TW |
dc.title | RRH Deployment in Flexible C-RAN under Limited Fronthaul Capacity | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊得年,林宗男,周承復 | |
dc.subject.keyword | 雲端無線接取網路,前端回程網路,無線行動通訊,基地台佈建,第五代行動通訊,部分集中的雲端無線接取網路,彈性雲端無線接取網路, | zh_TW |
dc.subject.keyword | C-RAN (cloud radio access networks),fronthaul capacity, base station deployment,next generation communication,5G,partially centralized,flexible C-RAN, | en |
dc.relation.page | 46 | |
dc.identifier.doi | 10.6342/NTU201603043 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-18 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 1.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。