請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49378完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林祥泰(Shiang-Tai Lin) | |
| dc.contributor.author | Hsuan Lo | en |
| dc.contributor.author | 駱璇 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:25:59Z | - |
| dc.date.available | 2016-08-30 | |
| dc.date.copyright | 2016-08-30 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-18 | |
| dc.identifier.citation | 1. Kvenvolden, K.A., Gas hydrates-geological perspective and global change. Reviews of Geophysics-Richmond Virginia Then Washington-, 1993. 31: p. 173-173.
2. Dickens, G.R., C. Paull, and P. Wallace, Direct measurement of in situ methane quantities in a large gas hydrate reservoir. Nature, 1997. 385: p. 426-428. 3. Haq, B.U., Natural gas deposits - Methane in the deep blue sea. Science, 1999. 285(5427): p. 543-544. 4. Mao, Z. and S.B. Sinnott, Separation of organic molecular mixtures in carbon nanotubes and bundles: molecular dynamics simulations. The Journal of Physical Chemistry B, 2001. 105(29): p. 6916-6924. 5. Strobel, T.A. et al., Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chemical Physics Letters, 2009. 478(4): p. 97-109. 6. Sloan, E.D., Clathrate Hydrate of Natural Gases: Revised and Expanded. 1998. 7. Chatti, I., et al., Benefits and drawbacks of clathrate hydrates: a review of their areas of interest. Energy Conversion and Management, 2005. 46(9-10): p. 1333-1343. 8. Davies, S.R., et al., Hydrate plug dissociation. AICHhE Journal, 2006. 52(12): p. 4016-4027. 9. Panter, J.L., et al., Hydrate Plug Dissociation via Nitrogen Purge: Experiments and Modeling. Energy & Fuels, 2011. 25(6): p. 2572-2578. 10. Dickens, G.R., C.K. Paull, and P. Wallace, Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature, 1997. 385(6615): p. 426-428. 11. Gornitz, V. and I. Fung, Potential Distribution Of Methane Hydrates In The Worlds Oceans. Global Biogeochemical Cycles, 1994. 8(3): p. 335-347. 12. Kvenvolden, K.A., GAS Hydrates - Geological Perspective And Global Change. Reviews of Geophysics, 1993. 31(2): p. 173-187. 13. Sloan Jr, E.D. and C. Koh, Clathrate hydrates of natural gases. 2007: CRC press. 14. Boswell, R. and T.S. Collett, Current perspectives on gas hydrate resources. Energy & environmental science, 2011. 4(4): p. 1206-1215. 15. Kuuskraa, V., S.H. Stevens, and K.D. Moodhe, Technically recoverable shale oil and shale gas resources: an assessment of 137 shale formations in 41 countries outside the United States. 2013. 16. Chen, L., et al., Two dimensional fluid flow models at two gas hydrate sites offshore southwestern Taiwan. Journal of Asian Earth Sciences, 2014. 92: p. 245-253. 17. Gbaruko, B.C., et al., Gas hydrates and clathrates: Flow assurance, environmental and economic perspectives and the Nigerian liquified natural gas project. Journal of Petroleum Science and Engineering, 2007. 56(1-3): p. 192-198. 18. Chapoy, A., R. Anderson, and B. Tohidi, Low-pressure molecular hydrogen storage in semi-clathrate hydrates of quaternary ammonium compounds. Journal of the American Chemical Society, 2007. 129(4): p. 746-747. 19. Kim, D.-Y., Y. Park, and H. Lee, Tuning clathrate hydrates: Application to hydrogen storage. Catalysis Today, 2007. 120(3-4): p. 257-261. 20. Prasad, P.S.R., Y. Sowjanya, and K.S. Prasad, Micro-Raman investigations of mixed gas hydrates. Vibrational Spectroscopy, 2009. 50(2): p. 319-323. 21. Sugahara, T. et al., Increasing Hydrogen Storage Capacity Using Tetrahydrofuran. Journal of the American Chemical Society, 2009. 131(41): p. 14616-14617. 22. Ogata, K. et al., Hydrogen storage in trimethylamine hydrate: Thermodynamic stability and hydrogen storage capacity of hydrogen plus trimethylamine mixed semi-clathrate hydrate. Chemical Engineering Science, 2010. 65(5): p. 1616-1620. 23. Nakata, T., K. Hirai, and T. Takaoki, Study of natural gas hydrate (NGH) carriers, in Proceedings of the 6th International conference on Gas Hydrates. 2008: Vancouver, British Columbia, Canada. 24. Koh, D.-Y., et al., Energy-efficient natural gas hydrate production using gas exchange. Applied Energy, 2016. 162: p. 114-130. 25. Schoderbek, D. and R. Boswell, Iġnik Sikumi# 1, Gas Hydrate Test Well, Successfully Installed on the Alaska North Slope. Natural Gas & Oil, 2011. 304: p. 285-4541. 26. Lee, H., et al., Recovering methane from solid methane hydrate with carbon dioxide. Angewandte Chemie International Edition, 2003. 42(41): p. 5048-5051. 27. Boswell, R., Japan completes first offshore methane hydrate production test—Methane successfully produced from deepwater hydrate layers. Center for Natural Gas and Oil, 2013. 412: p. 386-7614. 28. Komai, T., Y. Yamamoto, and K. Ohga, Dynamics of reformation and replacement of CO2 and CH4 gas hydrates. Annals of the New York Academy of Sciences, 2000. 912(1): p. 272-280. 29. Ota, M., et al., Macro and microscopic CH4–CO2 replacement in CH4 hydrate under pressurized CO2. AIChE Journal, 2007. 53(10): p. 2715-2721. 30. Hancock, S., et al., Overview of thermal-stimulation production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. Bulletin-Geological Survey Of Canada, 2005. 585: p. 135. 31. Tung, Y.-T., et al., In situ methane recovery and carbon dioxide sequestration in methane hydrates: a molecular dynamics simulation study. The Journal of Physical Chemistry B, 2011. 115(51): p. 15295-15302. 32. Yoon, J.-H., et al., Transformation of methane hydrate to carbon dioxide hydrate: in situ Raman spectroscopic observations. The Journal of Physical Chemistry A, 2004. 108(23): p. 5057-5059. 33. Ota, M., et al., Replacement of CH4 in the hydrate by use of liquid CO 2. Energy Conversion and Management, 2005. 46(11): p. 1680-1691. 34. Bigalke, N.K., et al., CO2 injection into submarine sediments: disturbing news for methane-rich hydrates. 2011. 35. Yuan, Q., et al., Replacement of Methane from Hydrates in Porous Sediments with CO2-in-Water Emulsions. Industrial & Engineering Chemistry Research, 2014. 53(31): p. 12476-12484. 36. Deusner, C., et al., Methane production from gas hydrate deposits through injection of supercritical CO2. Energies, 2012. 5(7): p. 2112-2140. 37. Geng, C.-Y., H. Wen, and H. Zhou, Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO2. The Journal of Physical Chemistry A, 2009. 113(18): p. 5463-5469. 38. Qi, Y., M. Ota, and H. Zhang, Molecular dynamics simulation of replacement of CH4 in hydrate with CO2. Energy Conversion and Management, 2011. 52(7): p. 2682-2687. 39. Bai, D., et al., Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations. Energy & Environmental Science, 2012. 5(5): p. 7033-7041. 40. Demurov, A., R. Radhakrishnan, and B.L. Trout, Computations of diffusivities in ice and CO2 clathrate hydrates via molecular dynamics and Monte Carlo simulations. Journal of Chemical Physics, 2002. 116(2): p. 702-709. 41. Peters, B., et al., Path sampling calculation of methane diffusivity in natural gas hydrates from a water-vacancy assisted mechanism. Journal of the American Chemical Society, 2008. 130(51): p. 17342-17350. 42. Falenty, A., A. Salamatin, and W. Kuhs, Kinetics of CO2-hydrate formation from ice powders: data summary and modeling extended to low temperatures. The Journal of Physical Chemistry C, 2013. 117(16): p. 8443-8457. 43. Hockney, R.W., S.P. Goel, and J.W. Eastwood, 10000 Particle Molecular Dynamics Model with Long-Range Forces. Chemical Physics Letters, 1973. 21(3): p. 589-591. 44. Verlet, L., Computer Experiments On Classical Fluids .I. Thermodynamical Properties Of Lennard-Jones Molecules. Physical Review, 1967. 159(1): p. 98-&. 45. Toukmaji, A.Y. and J.A. Board Jr, Ewald summation techniques in perspective: A survey. Computer Physics Communications, 1996. 95(2-3): p. 73-92. 46. Kittel, C.H.K., Thermal Physics, 2nd 1980, San Francisco: W.H. Freeman and Company. P 31. 47. Landau, L.D.L., E.M., Statistical Physics. Pergamon Press. 1980. 48. Hoover, W.G., Canonical Dynamics - Equilibrium Phase-Space Distributions. Physical Review A, 1985. 31(3): p. 1695-1697. 49. Berendsen, H.J.C., et al., Molecular-Dynamics With Coupling To An External Bath. Journal of Chemical Physics, 1984. 81(8): p. 3684-3690. 50. Berendsen, H.J.C., Transport Properties Computed by Linear Response through Weak Coupling to a Bath, in Computer Simulation in Materials Science, M. Meyer and V. Pontikis, Editors. 1991, Springer Netherlands. p. 139-155. 51. Parrinello, M. and A. Rahman, Polymorphic Transitions In Single-Crystals - A New Molecular-Dynamics Method. Journal of Applied Physics, 1981. 52(12): p. 7182-7190. 52. Module, F., Materials Studio 6.0. Accelrys Inc., San Diego, CA, 2011. 53. Bernal, J. and R. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. Journal of Chemical Physics, 1933. 1(8): p. 515-548. 54. Sum, A.K., R.C. Burruss, and E.D. Sloan, Measurement of clathrate hydrates via Raman spectroscopy. The Journal of Physical Chemistry B, 1997. 101(38): p. 7371-7377. 55. Hess, B., et al., GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of chemical theory and computation, 2008. 4(3): p. 435-447. 56. Abascal, J., et al., A potential model for the study of ices and amorphous water: TIP4P/Ice. The Journal of chemical physics, 2005. 122: p. 234511. 57. Kaminski, G.A., et al., Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 2001. 105(28): p. 6474-6487. 58. Harris, J.G. and K.H. Yung, Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. The Journal of Physical Chemistry, 1995. 99(31): p. 12021-12024. 59. Chao, H.-I. and S.-T. Lin, Exploring Self-Preservation in Methane Hydrate Dissociation via Molecular Dynamics Simulation. 2015. 60. Luzar, A. and D. Chandler, Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations. The Journal of chemical physics, 1993. 98(10): p. 8160-8173. 61. Wu, J.-Y. and S.-T. Lin, Influence of the Additive Tetrahydrofuran on the Growth and Nucleation of Methane Hydrate via Molecular Dynamics Simulations. 2015, National Taiwan University. p. 35-37. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49378 | - |
| dc.description.abstract | 甲烷水合物是一種包含水與甲烷氣體的白色結晶固體、通常會在高壓低溫的環境下生成。由於世界各地的大陸棚及海底被發現有豐富的含量,因此甲烷水合物被視為一種有潛力的新能源。除了能源開採,如何減少溫室氣體也成為近年來重要的議題。因此許多科學家建議使用置換的方法,利用二氧化碳取代水合物中的甲烷,在甲烷被置換出來當作能源的同時,又可以將二氧化碳以水合物的形式貯藏在海底中。在實驗中已經證實將液態的二氧化碳注入碎冰狀的甲烷水合物中,可以觀察到置換反應的發生,同時相關的置換機制也被提出。一般普遍的認為在水合物的晶相結構中會存在一些缺少水分子的缺陷處(我們稱此缺陷為水洞),而水洞的存在可以幫助客體分子(甲烷、二氧化碳)在晶相中的移動以達成置換反應。然而真正的置換機制還是仍然無法確定。
在本研究中,我們運用分子動力學模擬來觀察發生在甲烷水合物晶相和純二氧化碳相之間的介面上的置換反應。結果顯示二氧化碳分子只能往內置換約一層單位晶格厚度的甲烷水合物;即使在晶相中央引入了一個水洞之後,發現水洞會快速移往介面消失、對於拓展可置換區域無明顯幫助。另外我們也研究了在有水洞和沒有水洞的情況下,甲烷和二氧化碳分子在無介面純晶相系統中的移動情形。模擬結果顯示水洞對於系統而言是高能量、不穩定的存在。當系統中只有一個水洞存在時,水洞可以自由的在晶相中移動,但是對於客體分子的移動無明顯幫助。當系統中有高濃度的水洞時,原本均勻分布的水洞會逐漸修復、並聚集成由破碎的小水籠子(512)在中心而破碎的大水籠子(51262)在四周的特殊結構,同時我們發現有移動過的客體分子都指出現在密集的水洞聚集處。為了確認本研究中模擬的可性度,我們測量了客體分子在水合物晶相中的擴散係數,並發現其與實驗值相符合。透過本研究,可以得知置換行為只會發生在像是介面等高濃度水洞聚集處,無法透過單個水洞的機制使客體分子在水合物中移動來達成置換。 | zh_TW |
| dc.description.abstract | Clathrate hydrates are a class of nonstoichiometric crystalline compounds forming from water and small gas molecules, such as methane and carbon dioxides, at low temperatures and high pressures. Due to its abundance in nature, methane hydrate (MH) is regarded as a potential energy resource for the future. One intriguing idea for the simultaneous recovery of energy and sequestration of global warming gas is proposed by the transformation of methane hydrate into carbon dioxide (CO2) hydrate without melting the network of hydrogen-bonded water molecules. Some experiments have shown that methane hydrate can be changed into CO2 hydrate by injecting liquid CO2 into methane hydrate powders, and some theories has been proposed that there should be some porous vacancies formed by water molecules (water vacancy) in the hydrate structure to facilitate the replacement reaction. However, the exact mechanism is still unclear.
Molecular dynamics (MD) simulation has been a useful tool to unveil the molecular level details of gas hydrate. In this work, we used MD simulation to study the mechanism for the replacement of methane in MH using CO2 both with and without a hydrate interface. When a hydrate-liquid CO2 interface is present, replacement only occurred in the first few surface layers of hydrate structure. If water vacancy is introduced to the hydrate phase, the vacancy quickly diffuses to the interface and vanishes, and thus does not promote the replacement process. In the case of bulk hydrate crystal (no interface), we investigate how the concentration of gas molecules (occupancy) and water vacancy affects the diffusivity of methane and CO2 in the crystalline phase. For the system with low concentration of water vacancy, we found that the vacancy propagated within the hydrate structure; however, its propagation did not stimulate the movement of methane or CO2 molecule between cages. For the system with high concentration of water vacancy, the initially separated vacancies were found to aggregate and form larger clusters of defected structures, each of which has 5 or more water vacancies centering around a small (512) cage, and resulting in broken surrounding large cages (51262). The diffusion of methane or CO2 molecular were found to take place only in such aggregated defect structures. The diffusion coefficient of methane and carbon dioxide molecules in such systems were found to be in good agreement with experiment. The result of simulations suggest that the replacement of methane with CO2 only occurs within structures of with aggregated water vacancies, such as grain boundary or interface. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:25:59Z (GMT). No. of bitstreams: 1 ntu-105-R03524060-1.pdf: 9104300 bytes, checksum: 49492b0aca1c3361ab045256a5caad6b (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 致謝 1
中文摘要 2 ABSTRACT 3 CONTENTS 5 LIST OF FIGURES 8 LIST OF TABLES 13 Chapter 1 Clathrate Hydrates 14 1.1 Clathrate Hydrates 14 1.2 Application of Clathrate Hydrates 16 1.3 Replacement of CH4 in Methane Hydrates with CO2 18 1.4 Motivations 23 Chapter 2 Theory 24 2.1 Molecular Dynamics Simulation 24 2.2 Integration of Equation of Motion 26 2.3 Force field 26 2.3.1 Non-Bond Terms 27 2.3.2 Valence Terms 29 2.4 Ensemble 29 2.5 Temperature Thermostat 30 2.6 Pressure Barostat 30 Chapter 3 Computational Details 32 3.1 Models 32 3.1.1 Models for replacement of CH4 hydrates by liquid CO2 33 3.1.2 Models for transportation of CH4 and CO2 in hydrates 33 3.2 The setting of temperature and pressure condition 34 3.3 Force Field 38 3.4 Hydrogen Bond Identification 40 3.5 Cage Identification 41 3.6 Water Vacancy Identification 43 3.7 Diffusion Coefficient Calculation and Moving Molecule Identification 45 Chapter 4 Results and Discussion 47 4.1 Replacement of CH4 hydrate by liquid CO2 47 4.1.1 Replacement at interface 48 4.1.2 Exchanging behavior of water molecules in hydrate phase 51 4.1.3 Introducing a water vacancy into the system with interface 52 4.2 Transport of CH4 & CO2 in bulk hydrate 56 4.2.1 Movement of guests and water vacancies from Models with low concentration of vacancy 57 4.2.2 Diffusion Coefficient of isolated water vacancy 63 4.2.3 Aggregation of Water Vacancies in Models with High Concentration of Vacancy 65 4.2.4 Movement of Guest Molecules from Models with High Concentration of Vacancy 78 4.2.5 Diffusion coefficients of guest molecules from Models with High Concentration of Vacancy 82 4.2.6 Difference between CH4 Hydrates and CO2 hydrates from Models with High Concentration of Vacancy 85 4.2.7 Some Examples of Movement of Guests in hydrates 89 Chapter 5 Conclusions 95 References 97 | |
| dc.language.iso | en | |
| dc.subject | 分子動力學模擬 | zh_TW |
| dc.subject | 甲烷水合物 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 置換反應 | zh_TW |
| dc.subject | methane hydrate | en |
| dc.subject | molecular dynamics simulation | en |
| dc.subject | replacement | en |
| dc.subject | carbon dioxide | en |
| dc.title | 利用分子動力學模擬探討二氧化碳置換甲烷水合物的機制 | zh_TW |
| dc.title | Mechanism for the Replacement of CH4 in Methane Hydrates with CO2 in the Solid Phase via Molecular Dynamics Simulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳立仁(Li-Jen Chen),郭錦龍(Chin-Lung Kuo),李旻璁(Ming-Tsung Lee),董彥佃(Yen-Tien Tung) | |
| dc.subject.keyword | 甲烷水合物,二氧化碳,置換反應,分子動力學模擬, | zh_TW |
| dc.subject.keyword | methane hydrate,carbon dioxide,replacement,molecular dynamics simulation, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU201602730 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 8.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
