Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49349
標題: 人臉屬性偵測基於深度神經網路
Facial Attribute Detection by Deep Neural Network
作者: Jia-Shin Lan
藍家馨
指導教授: 徐宏民(Winston Hsu)
關鍵字: 人臉屬性偵測,深度神經網路,多標籤分類問題,
facial attribute detection,DNN,multi-label classification,
出版年 : 2016
學位: 碩士
摘要: 近年來,人臉屬性在電腦視覺領域越來越受到重視,包括辨識、分類、檢索等研究方面。在照片中偵測人臉屬性是富有挑戰性的,因為真實世界的背景雜亂或是人臉角度變化影響黑大,例如:大小、姿勢、光影變化。有效解決這個問題的辦法是建立適當的特徵去表示人臉。近幾年在影像分類領域崛起的Deep Neural Network (DNN)已被大量應用於此類問題。DNN可以有效的解決這個問題,但是DNN需要大量的計算量及空間需求量。
增進人臉屬性分類的準確率是很重要的一步。所以我們的目標是用比較小的DNN模型,降低在偵測時的運算量及所需要的儲存空間。我們的模型是從資料中去學習人臉屬性之間的關係,先從大量的人臉識別中學習,再用人臉屬性調變參數。利用參數數量較少的DNN模型來偵測人臉屬性仍可以達到與傳統方法近乎相同的準確率。我們的人臉屬性偵測的實驗結果表現於現有公開最大量的人臉屬性資料庫CelebA。
Facial attributes have gained popularity in the past few years in machine vision tasks including recognition, classification, and retrieval. Predicting facial attributes from web images is very challenging due to background clutters and face variations, such as scale, pose, and illumination in the real world. The key to this problem is to build proper feature representations to cope with these unfavourable conditions. Given the success of deep neural network (DNN) in image classification, the high level DNN feature as an intuitive and reasonable choice has been widely utilized for this problem. DNN is powerful to handle face variation, but it needs heavy computation efforts and memory storage resources.
Improving the accuracy of attribute classifiers is an important first step in any application which uses these attributes. Therefore, our goal is improving face attribute detection performance with smaller architecture of deep models. Our network is pre-trained with massive face identities, then fine-tuned with attribute labels. We consider the DNN features as face representation for attribute prediction. We demonstrate the effectiveness of our method by producing results on the challenging publicly available datase CelebA.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49349
DOI: 10.6342/NTU201602385
全文授權: 有償授權
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.47 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved