Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49344
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳煇(Ping-Hei Chen)
dc.contributor.authorChun-Hui Wuen
dc.contributor.author吳俊輝zh_TW
dc.date.accessioned2021-06-15T11:24:32Z-
dc.date.available2016-08-25
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-17
dc.identifier.citation[1] Gravesen, P., Branebjerg, J., and Jensen, O. S., 1993, 'Microfluidics-a review,' Journal of Micromechanics and Microengineering, 3(4), p. 168.
[2] Oh, K. W., and Ahn, C. H., 2006, 'A review of microvalves,' Journal of micromechanics and microengineering, 16(5), p. R13.
[3] Nguyen, N.-T., Huang, X., and Chuan, T. K., 2002, 'MEMS-micropumps: a review,' Journal of fluids Engineering, 124(2), pp. 384-392.
[4] Laser, D., and Santiago, J., 2004, 'A review of micropumps,' Journal of micromechanics and microengineering, 14(6), p. R35.
[5] Woias, P., 2005, 'Micropumps—past, progress and future prospects,' Sensors and Actuators B: Chemical, 105(1), pp. 28-38.
[6] Nguyen, N.-T., and Wu, Z., 2005, 'Micromixers—a review,' Journal of Micromechanics and Microengineering, 15(2), p. R1.
[7] Lee, C.-Y., Chang, C.-L., Wang, Y.-N., and Fu, L.-M., 2011, 'Microfluidic mixing: a review,' International journal of molecular sciences, 12(5), pp. 3263-3287.
[8] Nguyen, N., 1997, 'Micromachined flow sensors—a review,' Flow measurement and Instrumentation, 8(1), pp. 7-16.
[9] Kuo, J. T. W., Yu, L., and Meng, E., 2012, 'Micromachined Thermal Flow Sensors—A Review,' Micromachines, 3(4), pp. 550-573.
[10] Sajeesh, P., and Sen, A. K., 2014, 'Particle separation and sorting in microfluidic devices: a review,' Microfluidics and nanofluidics, 17(1), pp. 1-52.
[11] Beebe, D. J., Mensing, G. A., and Walker, G. M., 2002, 'Physics and applications of microfluidics in biology,' Annual review of biomedical engineering, 4(1), pp. 261-286.
[12] Whitesides, G. M., 2006, 'The origins and the future of microfluidics,' Nature, 442(7101), pp. 368-373.
[13] Sackmann, E. K., Fulton, A. L., and Beebe, D. J., 2014, 'The present and future role of microfluidics in biomedical research,' Nature, 507(7491), pp. 181-189.
[14] Kotz, K. T., Xiao, W., Miller-Graziano, C., Qian, W.-J., Russom, A., Warner, E. A., Moldawer, L. L., De, A., Bankey, P. E., and Petritis, B. O., 2010, 'Clinical microfluidics for neutrophil genomics and proteomics,' Nature medicine, 16(9), pp. 1042-1047.
[15] Tsai, M., Kita, A., Leach, J., Rounsevell, R., Huang, J. N., Moake, J., Ware, R. E., Fletcher, D. A., and Lam, W. A., 2012, 'In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology,' The Journal of clinical investigation, 122(1), p. 408.
[16] Kamisuki, S., Hagata, T., Tezuka, C., Nose, Y., Fujii, M., and Atobe, M., 'A low power, small, electrostatically-driven commercial inkjet head,' Proc. Micro Electro Mechanical Systems, 1998, The Eleventh Annual International Workshop on MEMS’98. Proceedings, IEEE, pp. 63-68.
[17] Kamisuki, S., Fujii, M., Takekoshi, T., Tezuka, C., and Atobe, M., 'A high resolution, electrostatically-driven commercial inkjet head,' Proc. Micro Electro Mechanical Systems, 2000, The Thirteenth Annual International Conference on MEMS’2000, IEEE, pp. 793-798.
[18] Meinhart, C. D., and Zhang, H., 2000, 'The flow structure inside a microfabricated inkjet printhead,' Journal of Microelectromechanical Systems, 9(1), pp. 67-75.
[19] Hornbeck, L. J., 'Digital light processing for high-brightness high-resolution applications,' Proc. Electronic Imaging'97, International Society for Optics and Photonics, pp. 27-40.
[20] Park, S., and Horowitz, R., 2003, 'Adaptive control for the conventional mode of operation of MEMS gyroscopes,' Journal of Microelectromechanical Systems, 12(1), pp. 101-108.
[21] Tang, T. K., Gutierrez, R. C., Stell, C. B., Vorperian, V., Arakaki, G., Rice, J. T., Li, W. J., Chakraborty, I., Shcheglov, K., and Wilcox, J. Z., 'A packaged silicon MEMS vibratory gyroscope for microspacecraft,' Proc. Micro Electro Mechanical Systems, 1997, The Tenth Annual International Workshop on MEMS’97, IEEE, pp. 500-505.
[22] Kuehnel, W., and Sherman, S., 1994, 'A surface micromachined silicon accelerometer with on-chip detection circuitry,' Sensors and Actuators A: Physical, 45(1), pp. 7-16.
[23] Neumann, J. J., and Gabriel, K. J., 2002, 'CMOS-MEMS membrane for audio-frequency acoustic actuation,' Sensors and Actuators A: Physical, 95(2), pp. 175-182.
[24] Rhee, M., and Burns, M. A., 2008, 'Microfluidic assembly blocks,' Lab on a Chip, 8(8), pp. 1365-1373.
[25] Yuen, P. K., 2008, 'SmartBuild–A truly plug-n-play modular microfluidic system,' Lab on a Chip, 8(8), pp. 1374-1378.
[26] Liou, D.-S., Hsieh, Y.-F., Kuo, L.-S., Yang, C.-T., and Chen, P.-H., 2011, 'Modular component design for portable microfluidic devices,' Microfluidics and nanofluidics, 10(2), pp. 465-474.
[27] Hsieh, Y.-F., Yang, A.-S., Chen, J.-W., Liao, S.-K., Su, T.-W., Yeh, S.-H., Chen, P.-J., and Chen, P.-H., 2014, 'A Lego®-like swappable fluidic module for bio-chem applications,' Sensors and Actuators B: Chemical, 204, pp. 489-496.
[28] Xie, J., Shih, J., Lin, Q., Yang, B., and Tai, Y.-C., 2004, 'Surface micromachined electrostatically actuated micro peristaltic pump,' Lab on a Chip, 4(5), pp. 495-501.
[29] Koch, M., Harris, N., Evans, A. G., White, N. M., and Brunnschweiler, A., 1998, 'A novel micromachined pump based on thick-film piezoelectric actuation,' Sensors and Actuators A: Physical, 70(1), pp. 98-103.
[30] Böhm, S., Olthuis, W., and Bergveld, P., 1999, 'A plastic micropump constructed with conventional techniques and materials,' Sensors and Actuators A: Physical, 77(3), pp. 223-228.
[31] Yamahata, C., Lacharme, F., Burri, Y., and Gijs, M. A., 2005, 'A ball valve micropump in glass fabricated by powder blasting,' Sensors and Actuators B: Chemical, 110(1), pp. 1-7.
[32] Gong, M. M., MacDonald, B. D., Nguyen, T. V., and Sinton, D., 2012, 'Hand-powered microfluidics: A membrane pump with a patient-to-chip syringe interface,' Biomicrofluidics, 6(4), p. 044102.
[33] Li, W., Chen, T., Chen, Z., Fei, P., Yu, Z., Pang, Y., and Huang, Y., 2012, 'Squeeze-chip: a finger-controlled microfluidic flow network device and its application to biochemical assays,' Lab on a chip, 12(9), pp. 1587-1590.
[34] Yang, A.-S., Hsieh, Y.-F., Kuo, L.-S., Tseng, L.-Y., Liao, S.-K., and Chen, P.-H., 2013, 'A novel vortex mixer actuated by one-shot electricity-free pumps,' Chemical Engineering Journal, 228, pp. 882-888.
[35] Wang, C.-H., and Lee, G.-B., 2006, 'Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels,' Journal of Micromechanics and Microengineering, 16(2), p. 341.
[36] Xia, Y., and Whitesides, G. M., 1998, 'Soft lithography,' Annual review of materials science, 28(1), pp. 153-184.
[37] Duffy, D. C., McDonald, J. C., Schueller, O. J., and Whitesides, G. M., 1998, 'Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),' Analytical chemistry, 70(23), pp. 4974-4984.
[38] Anderson, J. R., Chiu, D. T., Wu, H., Schueller, O. J., and Whitesides, G. M., 2000, 'Fabrication of microfluidic systems in poly (dimethylsiloxane),' Electrophoresis, 21, pp. 27-40.
[39] Oosterbroek, R., Lammerink, T., Berenschot, J., Krijnen, G., Elwenspoek, M., and Van den Berg, A., 1999, 'A micromachined pressure/flow-sensor,' Sensors and Actuators A: Physical, 77(3), pp. 167-177.
[40] Choi, S., Lee, M. G., and Park, J.-K., 2010, 'Microfluidic parallel circuit for measurement of hydraulic resistance,' Biomicrofluidics, 4, p. 034110.
[41] Akers, A., Gassman, M., and Smith, R., 2010, Hydraulic power system analysis, CRC press, pp. 335-356.
[42] Tesař, V., 2007, Pressure-driven microfluidics, Artech House Boston/London, pp. 74-86.
[43] Tesař, V., and Kordík, J., 2013, 'Effective hydraulic resistance of a nozzle in an electrodynamic actuator generating hybrid-synthetic jet–Part I: Data acquisition,' Sensors and Actuators A: Physical, 199, pp. 379-390.
[44] Landers, J. P., 2007, Handbook of capillary and microchip electrophoresis and associated microtechniques, CRC press, pp.1121-1149.
[45] Elwenspoek, M., and Wiegerink, R. J., 2001, Mechanical microsensors, Springer Science & Business Media, pp.81-81.
[46] Hsu, T.-R., 2008, MEMS & microsystems: design, manufacture, and nanoscale engineering, John Wiley & Sons, pp. 112-113.
[47] Liu, M., Sun, J., Sun, Y., Bock, C., and Chen, Q., 2009, 'Thickness-dependent mechanical properties of polydimethylsiloxane membranes,' Journal of Micromechanics and Microengineering, 19(3), p. 035028.
[48] White, F. M., and Corfield, I., 2006, Viscous fluid flow, McGraw-Hill New York.
[49] Van Oudheusden, B., 1992, 'Silicon thermal flow sensors,' Sensors and Actuators A: Physical, 30(1), pp. 5-26.
[50] Ho, C.-M., and Tai, Y.-C., 1998, 'Micro-electro-mechanical-systems (MEMS) and fluid flows,' Annual Review of Fluid Mechanics, 30(1), pp. 579-612.
[51] Silvestri, S., and Schena, E., 2012, 'Micromachined Flow Sensors in Biomedical Applications,' Micromachines, 3(4), pp. 225-243.
[52] Takahashi, H., Dung, N. M., Matsumoto, K., and Shimoyama, I., 2012, 'Differential pressure sensor using a piezoresistive cantilever,' Journal of Micromechanics and Microengineering, 22(5), p. 055015.
[53] Liu, J., Tai, Y.-C., and Ho, C.-M., 'MEMS for pressure distribution studies of gaseous flows in microchannels,' Proc. proceedings of the IEEE micro electro mechanical systems, pp. 209-215.
[54] Nguyen, N., and Dötzel, W., 1997, 'Asymmetrical locations of heaters and sensors relative to each other using heater arrays: A novel method for designing multi-range electrocaloric mass-flow sensors,' Sensors and Actuators A: Physical, 62(1), pp. 506-512.
[55] Marshall, D., 1958, 'Measurement of sap flow in conifers by heat transport,' Plant physiology, 33(6), p. 385.
[56] Van Kuijk, J., Lammerink, T., De Bree, H.-E., Elwenspoek, M., and Fluitman, J., 1995, 'Multi-parameter detection in fluid flows,' Sensors and Actuators A: Physical, 47(1), pp. 369-372.
[57] Wu, S., Lin, Q., Yuen, Y., and Tai, Y.-C., 2001, 'MEMS flow sensors for nano-fluidic applications,' Sensors and Actuators A: Physical, 89(1), pp. 152-158.
[58] Fürjes, P., Légrádi, G., Dücső, C., Aszódi, A., and Bársony, I., 2004, 'Thermal characterisation of a direction dependent flow sensor,' Sensors and Actuators A: Physical, 115(2-3), pp. 417-423.
[59] Tan, Z., Shikida, M., Hirota, M., Sato, K., Iwasaki, T., and Iriye, Y., 2007, 'Experimental and theoretical study of an on-wall in-tube flexible thermal sensor,' Journal of Micromechanics and Microengineering, 17(4), p. 679.
[60] Dijkstra, M., de Boer, M., Berenschot, J., Lammerink, T., Wiegerink, R., and Elwenspoek, M., 2008, 'Miniaturized thermal flow sensor with planar-integrated sensor structures on semicircular surface channels,' Sensors and Actuators A: Physical, 143(1), pp. 1-6.
[61] Meng, E., Li, P.-Y., and Tai, Y.-C., 2008, 'A biocompatible Parylene thermal flow sensing array,' Sensors and Actuators A: Physical, 144(1), pp. 18-28.
[62] Dalola, S., Cerimovic, S., Kohl, F., Beigelbeck, R., Schalko, J., Ferrari, V., Marioli, D., Keplinger, F., and Sauter, T., 2012, 'MEMS Thermal Flow Sensor With Smart Electronic Interface Circuit,' Sensors Journal, IEEE, 12(12), pp. 3318-3328.
[63] Johnson, R., and Higashi, R., 1987, 'A highly sensitive silicon chip microtransducer for air flow and differential pressure sensing applications,' Sensors and Actuators, 11(1), pp. 63-72.
[64] Lammerink, T. S., Tas, N. R., Elwenspoek, M., and Fluitman, J. H., 1993, 'Micro-liquid flow sensor,' Sensors and Actuators A: Physical, 37, pp. 45-50.
[65] Kohl, F., Jachimowicz, A., Steurer, J., Glatz, R., Kuttner, J., Biacovský, D., Olcaytug, F., and Urban, G., 1994, 'A micromachined flow sensor for liquid and gaseous fluids,' Sensors and Actuators A: Physical, 41(1), pp. 293-299.
[66] Mailly, F., Giani, A., Bonnot, R., Temple-Boyer, P., Pascal-Delannoy, F., Foucaran, A., and Boyer, A., 2001, 'Anemometer with hot platinum thin film,' Sensors and Actuators A: Physical, 94(1), pp. 32-38.
[67] Van Baar, J., Wiegerink, R., Lammerink, T., Krijnen, G., and Elwenspoek, M., 2001, 'Micromachined structures for thermal measurements of fluid and flow parameters,' Journal of micromechanics and microengineering, 11(4), p. 311.
[68] Svedin, N., Kälvesten, E., and Stemme, G., 2003, 'A lift force sensor with integrated hot-chips for wide range flow measurements,' Sensors and Actuators A: Physical, 109(1-2), pp. 120-130.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49344-
dc.description.abstract本論文提出一新式量測方式用來量測薄膜幫浦之流容,並提出四個新理論公式用來定量分析及六個新理論公式用來定性預測其流容值。藉由量測薄膜中心點撓度以計算其對應之壓力值,進而決定其流容值。並探討PDMS薄膜厚度與楊氏係數之關係,並由實驗數據提出一線性關係式。在撓度為非線性時,流容之實驗數據與理論預測值兩者之間表現出相當一致之趨勢。
本論文亦開發兩形,洞形與啞鈴形,共五種不同之微加工熱式流量感測器,用於進行低流量之量測。其中感應元件是由parylene-C薄膜包覆於兩片薄膜式鉑電阻。洞形感測器分別採垂直與水平放置以分析其靈敏度差異,將洞形感測器採垂直放置時,感測器與水流方向垂直;採水平放置時,感測器懸空於流道正中央,與水流方向平行。而洞形感測器中有一孔洞能讓流體從中穿過,藉此帶走大量之熱以提高靈敏度,缺點為流阻較大。實驗結果顯示靈敏度不如預期,因此考慮增強隔熱、提昇效率、並降低阻力後,重新設計感測器外形並開發出一新式啞鈴形感測器。實驗結果顯示,啞鈴形感測器之最佳靈敏度在功率為0.13 mW時,能高達7.7 mV/(μl/min),且能夠量測到0.05 μl/min 之體積流率及量測解析度。最後並與相關文獻進行性能比較以評斷本文所開發之流量感測器。
zh_TW
dc.description.abstractA novel approach was proposed to measure the hydraulic capacitance of a microfluidic membrane pump. Membrane deflection equations were modified from various studies to propose six theoretical equations to estimate the hydraulic capacitance of a microfluidic membrane pump. Thus, measuring the center deflection of the membrane allows the corresponding pressure and hydraulic capacitance of the pump to be determined. This study also investigated how membrane thickness affected the Young’s modulus of a polydimethylsiloxane (PDMS) membrane. Based on the experimental results, a linear correlation was proposed to estimate the hydraulic capacitance. The measured hydraulic capacitance data and the proposed equations in the linear and nonlinear regions qualitatively exhibited good agreement.
Micromachined thermal flow sensors for measuring liquid flow down to 0.05 μl/min were developed. The sensing element is a parylene-C thin film with two thin film platinum resistors as heating and sensing elements. The sensors are integrated with AWG 24 Teflon tubing and additional two external constant resistors to form a Wheatstone bridge. The efficacies of the orifice type sensors in two configurations, vertical and horizontal were also investigated. In vertical configuration, the sensor was arranged perpendicular to the flow direction. The orifice flow allows maximum heat transfer from the sensor to the flow but leads to higher flow resistance. After redesigning the geometries of the sensor, the dumbbell type thermal flow sensor was further developed. The sensor is suspended in the middle of the channel to improve thermal insulation and achieve better sensitivity. The sensors have demonstrated a flow rate resolution below 0.05 μl/min. The experimental results show that the sensor has a sensitivity of 7.7 mV/(μl/min) at 0.13 mW power consumption and 0.05 μl/min volumetric flow rates. Comparison with related literatures has been made to judge how good the flow sensor developed in this study is.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:24:32Z (GMT). No. of bitstreams: 1
ntu-105-D99522025-1.pdf: 4160639 bytes, checksum: 7a3ed5ac86ef473b855f352c4f06c985 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 MEMS and Integrate Circuit Industry 1
1.2 MEMS and Microfluidics 2
1.3 Outlook of Microfluidic 3
Chapter 2 Microfluidic Membrane Pump 4
2.1 Micropump Fundamentals 5
2.1.1 Electrostatic Micropump 5
2.1.2 Piezoelectric Micropump 6
2.1.3 Electromagnetic Micropump 6
2.1.4 Pneumatic Micropump 7
2.2 Membrane Fundamentals 7
2.3 Theory for Membrane Pump 8
2.3.1 Electrohydraulic Analogy Theory 8
2.3.2 Pressure-Deflection Relation of the Membrane Pump 12
2.4 Apparatus Setup and Measurement Method 15
2.4.1 Design and Fabrication of the Microfluidic Modular Pump and the Membrane 15
2.4.2 Measurement of the Elastic Modulus of the PDMS Membrane 16
2.4.3 Measurement of the Hydraulic Capacitance of the Microfluidic Modular Membrane Pump 17
2.5 Results and Discussion 18
Chapter 3 Volumetric MEMS Flow Sensor 31
3.1 Non-thermal Volumetric Flow Meters 31
3.1.1 Variable Area Flow Meter 31
3.1.2 Rotation Flow Meter 32
3.1.3 Differential Pressure Flow Meter 32
3.1.4 Ultrasonic Flow Meter 33
3.1.5 Magnetic Flow Meter 33
3.1.6 Positive Displacement Flow Meter 34
3.2 MEMS Flow/Pressure Sensors 34
3.3 Thermal Flow Sensors 35
3.3.1 Transduction Method of Thermal Flow Sensors 35
3.3.2 Operating Modes of Thermal Flow Sensors 38
3.4 Design, Fabrication Process and Experimental Setup 39
3.4.1 Orifice Thermal Flow Sensor in Vertical Configuration 39
3.4.2 Orifice Thermal Flow Sensor in Horizontal Configuration 40
3.4.3 Dumbbell Thermal Flow Sensor 41
3.5 Results and Discussion 42
3.6 Summary 47
Chapter 4 Conclusion 75
dc.language.isoen
dc.subject流量量測zh_TW
dc.subject流容zh_TW
dc.subject微流體zh_TW
dc.subjectPDMSzh_TW
dc.subject楊氏係數zh_TW
dc.subject熱式流量感測器zh_TW
dc.subjectparylene-Czh_TW
dc.subjecthydraulic capacitanceen
dc.subjectflow rate measurementsen
dc.subjectparylene-Cen
dc.subjectthermal flow sensoren
dc.subjectYoung’s modulusen
dc.subjectPDMSen
dc.subjectmicrofluidicen
dc.title微流體系統中薄膜幫浦與流量感測器之研究zh_TW
dc.titleInvestigation on membrane pump and volumetric thermal flow sensor for a microfluidic systemen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee饒達仁(Da-Jeng Yao),曾繁根(Fan-Gang Tseng),王明文(Ming-Wen Wang),范士岡(Shih-Kang Fan),孫珍理(Chen-Li Sun)
dc.subject.keyword流容,微流體,PDMS,楊氏係數,熱式流量感測器,parylene-C,流量量測,zh_TW
dc.subject.keywordhydraulic capacitance,microfluidic,PDMS,Young’s modulus,thermal flow sensor,parylene-C,flow rate measurements,en
dc.relation.page84
dc.identifier.doi10.6342/NTU201603070
dc.rights.note有償授權
dc.date.accepted2016-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved