Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49316
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊馥菱(Fu-Ling Yang)
dc.contributor.authorChe-Wei Yehen
dc.contributor.author葉哲維zh_TW
dc.date.accessioned2021-06-15T11:23:23Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-17
dc.identifier.citation[1] AMCA Standard 210-99 Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating.
[2] M. J. Lighthill, “On Sound Generated Aerodynamically. I. General Theory”, Proceedings of the Royal Society, London. Series A, Vol. 211, No. 1107, 564-587, (1952).
[3] N. Curle, “The Influence of Solid Boundaries upon Aerodynamic Sound”, Proceedings of the Royal Society, London. Series A, Vol. 231, No. 1187, 505-514, (1955).
[4] E. Ffowcs Williams and D. L. Hawkings, “Sound Generation by Turbulence and Surfaces in Arbitrary Motion”, Proceedings of the Royal Society, London. Series A, Vol. 264, No. 1151, 321-342, (1969).
[5] F. Farassat, “Theory of Noise Generation From Moving Bodies With an Application to Helicopter Rotors”, NASA TR R-451, (1975).
[6] ANSYS Fluent 14.0, Theory Guide.
[7] Fluent 6.1, Acoustics Module Manual 1.3.2, “Spectral Density and Power Spectral Density of Sound”.
[8] Michael Norton and Denis Karczub, Fundamentals of Noise and Vibration Analysis for Engineers, 178-179.
[9] 陳樹禾,軸流式風扇流場與噪音之數值模擬分析,2012。
[10] 謝見誌,主動式散熱器之風扇性能及模組熱傳性能的分析與探討,2004。
[11] Peter Gullberg and Raja Sengupta, “Axial Fan Performance Predictions in CFD, Comparison of MRF and Sliding Mesh with Experiments”, SAE Technical Paper, No. 2011-01-0652, (2011).
[12] Szu Hsien Liu, “Computational and Experimental Investigations of Performance Curve of an Axial Flow Fan using Downstream Flow Resistance Method”, Experimental Thermal and Fluid Science, No. 34, 827-837, (2010).
[13] Kenneth S. Brentner, “Prediction of Helicopter Discrete Frequency Rotor Noise – a Computer Program Incorporating Realistic Blade Motion and Advanced Acoustic Formulation”, NASA TM-87721, (1986).
[14] Maaloum, A., “Effect of Inlet Duct Contour and Lack Thereof on the Noise Generated of an Axial Fan”, Applied Acoustic, No. 64, 999-1010, (2003).
[15] Xifeng Zhao, Jinju Sun, and Zhi Zhang, “Prediction and Measurement of Axial Flow Fan Aerodynamic and Aeroacoustic Performance in a Split-type Air-Conditioner Outdoor Unit”, International Journal of Refrigeration, Vol. 36, No. 3, 1098-1108, (2013).
[16] 陳彥彰,亥姆霍茲共振器應用於管路風機之實驗與模擬整合研究,2014。
[17] V. Yakhot and S.A. Orszag, “Renormalization Group Analysis of Turbulence – I: Basic Theory”, Journal of Scientific Computing, Vol. 1, No.1, 3-51, (1986).
[18] Szu Hsien Liu, “Performance and Inter-blade Flow of Axial Flow Fans with Different Blade Angles of Attack”, Journal of the Chinese Institute of Engineers, Vol. 34, No. 1, 141-153, (2011).
[19] Yan Xial-kang, “Numerical and Investigation on effect of Installation Angle of Rotor Blade on Axial Flow Fan”, International Conference on Mechanical and Electrical Technology, 359-363, (2010).
[20] Jiabin Wen and Haibo He, “Numerical Simulation and Analysis of Three Dimensional Flow Field of a Counter-Rotating Fan with Various Angles”, International Journal of Control and Automation, Vol.6, No.6, 127-138, (2013).
[21] J. Smagorinsky, “General Circulation experiments with the Primitive Equations.
I: the Basic Experiment”, Monthly Weather Review, Vol. 91, 99-164, (1963).
[22] F. Nicoud and F. Ducros, 'Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor', Flow Turbulence, and Combustion, Vol. 62, No.3, 183-200, (1999).
[23] Frank Kelecy, “Introduction to Rotating Machinery Analysis Using Fluent”, Fluent Inc.
[24] S. V. Patankar and D.B. Spalding, 'A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-dimensional Parabolic Flows', Int. J. of Heat and Mass Transfer, Vol. 15, 1787-1806, (1972).
[25] H. K. VERSTEEG and W. MALALASEKERA, An Introduction to Computational Fluid Dynamics - The Finite Volume Method.
[26] Ergun, S., “Fluid Flow through Packed Columns”, Chemical Engineering Progress, Vol. 48, No. 2, 89-94, (1952).
[27] J. S. Andrade Jr. “Inertial Effects on Fluid Flow through Disordered Porous Media”, Physical Review Letters, Vol. 82, No.26, 5249-5252, (1999).
[28] EAC company official website, http://www.elecapp.net/about-eac.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49316-
dc.description.abstract全密閉式風扇冷卻馬達廣泛應用於工業界,為了達成提高馬達致冷效果以及符合國家工廠噪音管制標準之目的,風扇冷卻系統氣動和聲學特性研究成為重要的研究課題。本研究主要使用計算流體力學軟體ANSYS Fluent內建之多重參考座標系統和滑移網格進行旋轉流場模擬。我們首先建立一數值風洞模型,針對Multi-Wing軸流式風扇採用傳統方法和下游流阻法兩種邊界條件進行風扇性能曲線的量測驗證。模擬結果和實驗數據相比,傳統方法最大誤差可達65.8%,而下游流阻法的結果較為精準,最大誤差僅8.72%。接著使用多重參考座標系統的擬穩態結果作為初始解代入滑移網格計算,誤差也皆小於5%,驗證了本研究之數值風洞是可行的。研究的後半段採用數值風洞計算包含安全網目、風扇、風罩和擋板的全密閉式風扇冷卻系統之系統性能曲線和聲場,安全網目以多孔隙材料簡化。我們嘗試四種幾何策略改善原始系統的性能,研究結果顯示幾何策略可大幅提升系統流量,但是由於後方斜流道和流體的交互作用產生多餘的聲源,和原始系統相比亦會造成少量噪音的產生。
關鍵字:全密閉式風扇冷卻馬達、多重座標參考系統、滑移網格、風扇性能曲線、流道設計、下游流阻法
zh_TW
dc.description.abstractTotally-Enclosed-Fan-Cooled (TEFC) motor is extensively utilized in modern industry. To reach the purposes of improving the motor cooling effect and according with the factory noise control standard, the research of aerodynamic and acoustic characteristics of the fan cooling system become important issues. In this study, we mainly use the computational fluid dynamics software, ANSYS Fluent and its build-in rotating model, Multiple Reference Frame (MRF) and sliding mesh (SM) models to simulate the swirling flow. We first construct a numerical wind tunnel which is conducted by two boundary conditions, the conventional method and the Downstream Flow Resistance (DFR) method, calculate the flow field of the Multi-Wing axial fan and verify the fan performance measurement. In comparison to the experimental data, the maximum error of the conventional method result is up to 65.8% and the DFR method result becomes more accurate and its maximum error is reduced to 8.72%. We then compute the transient result which begins from the quasi-steady initial solution by the sliding mesh model, and the errors are all less than 5%. These results verify that the numerical wind tunnel is feasible. In the last half of this research, we apply the previous numerical wind tunnel to compute the system performance curve and the acoustic field of the fan cooling system including the safety mesh, fan, shroud, and plate. The safety mesh is simplified by the porous zone. We try four strategies to modify the geometry of the system on the purposes of improving the volume flow rate and reducing the noise of the original system. The results show that the modified system has the ability to improve the system volume flow rate obviously, but the system noise also increases a little due to the interaction between the deflected pathway and the fluid in comparison to the original system.
Keywords: Totally-Enclosed-Fan-Cooled motor, Multiple Reference Frame, Sliding mesh, Fan performance curve, Downstream flow resistance method
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:23:23Z (GMT). No. of bitstreams: 1
ntu-105-R03522105-1.pdf: 5352929 bytes, checksum: 3b37a3b3110e9aadff8fea818e5f83ea (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 III
ABSTRACT IV
LISTS OF FIGURES VIII
LIST OF TABLES XI
Chapter1 Introduction 1
1.1 Objectives 1
1.2 Background 3
1.2.1 Fan Performance Curve 3
1.2.2 Lighthill’s Acoustic Analogy 6
1.2.3 Ffowcs Williams and Hawkings Model (FW-H Model) 9
1.2.4 Broadband Noise Source Model (BNS Model) 16
1.2.5 Sound 17
1.3 Literature Survey 22
1.3.1 Fan Performance Curve 22
1.3.2 Aerodynamic Noise 24
1.4 Outline 26
Chapter2 Numerical Scheme and Setup 27
2.1 Governing Equations 27
2.2 Turbulence Model 28
2.2.1 Turbulence model I: Renormalization Group k-ε (RNG) 29
2.2.2 Turbulence model II: Large Eddy Simulation (LES) 31
2.3 Rotating Model 33
2.3.1 Multiple Reference Frame Model (MRF) 34
2.3.2 Sliding Mesh Model (SMM) 35
2.4 Setup 36
2.4.1 Numerical Scheme and Discretization 36
2.4.2 Rotating Model Strategy 38
2.4.3 Porous Zone 38
Chapter3 Fan Performance Analysis 40
3.1 Numerical Model 40
3.1.1 Multi-Wing Fan 40
3.1.2 Computational Zone, Strategy and Mesh 43
3.1.3 Boundary Condition 45
3.1.4 Mesh Independence Analysis 46
3.2 Fan Performance Curve 47
3.3 Discussions 50
Chapter4 Performance and Acoustic Analysis of Fan System 53
4.1 Numerical Model 53
4.1.1 Fan System 53
4.1.2 Computational Zone, Boundary Condition, and Mesh 56
4.1.3 Parallel Computing 58
4.1.4 Mesh Independence Analysis 60
4.2 Implement of Safety Meshes 61
4.2.1 Resistance curve as a porous segment 61
4.2.2 Fan System Performance Curve 64
4.3 Flow Field Analysis the Fan System 65
4.4 Acoustic Analysis of the Fan System 72
4.4.1 Surface sound power by the Broadband Noise Model 72
4.4.2 Flow transiting from MRF to Sliding Mesh Model 74
4.4.3 Transient Acoustic Results of FW-H Model 77
4.5 Improved Design of Modified Fan System 85
4.5.1 The Principles of Designing the System 85
4.5.2 System Performance Curve 90
4.5.3 Flow Field Analysis of the Modified System 94
4.5.4 Quasi-steady Acoustic Results of Broadband Noise Model 99
4.5.5 Transient Acoustic Results of FW-H Model 104
Chapter5 Conclusions 108
References 110
dc.language.isoen
dc.subject多重座標參考系統zh_TW
dc.subject下游流阻法zh_TW
dc.subject全密閉式風扇冷卻馬達zh_TW
dc.subject流道設計zh_TW
dc.subject風扇性能曲線zh_TW
dc.subject滑移網格zh_TW
dc.subjectTotally-Enclosed-Fan-Cooled motoren
dc.subjectDownstream flow resistance methoden
dc.subjectFan performance curveen
dc.subjectSliding meshen
dc.subjectMultiple Reference Frameen
dc.title針對軸流風扇系統其性能曲線與聲學特性之數值模擬研究zh_TW
dc.titleNumerical Investigation of Performance Curve and Aeroacoustic Characteristics of an Axial Fan Systemen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃美嬌(Mei-Jiau Huang),伍次寅(Tzu-Yin Wu)
dc.subject.keyword全密閉式風扇冷卻馬達,多重座標參考系統,滑移網格,風扇性能曲線,流道設計,下游流阻法,zh_TW
dc.subject.keywordTotally-Enclosed-Fan-Cooled motor,Multiple Reference Frame,Sliding mesh,Fan performance curve,Downstream flow resistance method,en
dc.relation.page113
dc.identifier.doi10.6342/NTU201603120
dc.rights.note有償授權
dc.date.accepted2016-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
5.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved