請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49310
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳正宏 | |
dc.contributor.author | Kai-Wen Tang | en |
dc.contributor.author | 唐鎧文 | zh_TW |
dc.date.accessioned | 2021-06-15T11:23:09Z | - |
dc.date.available | 2016-08-26 | |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-17 | |
dc.identifier.citation | Berth, C., Bourg, A. C. (1994). 'Radon-222 and Chloride as Natural Tracers of the Infiltration of River Water into an Alluvial Aquifer in Which There Is Significant River/Groundwater Mixing.' Environmental science & technology, 28(5), 794-798.
Chyi, L. L., Quick, T. J., Yang, T. F., Chen, C. H. (2010). 'The experimental investigation of soil gas radon migration mechanisms and its implication in earthquake forecast.' Geofluids, 10(4), 556-563. Cook, P. G., Herczeg, A. L. (2012). “Environmental tracers in subsurface hydrology”. Springer Science & Business Media. Cook, P.G., Favreaub, G., Dightona, J.C., Tickellc, S. (2003). 'Determining natuR.Al groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers.' Journal of Hydrology, 277(1), 74-88. Cook, P. G., Lamontagne, S., Berhane, D., Clark, J. F. (2006). 'Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6.' Water Resources Research, 42(10). Corbett, D. R., Burnett, W. C., Cable, P. H., Clark, S. B. (1997). 'Radon tracing of groundwater input into Par Pond, Savannah River Site.' Journal of Hydrology, 203(1), 209-227. Craig, H. (1961). 'Isotopic variations in meteoric waters.' Science, 133(3465), 1702-1703. Du, J., Cheng, W., Zhang, Y., Jie, C., Guan, Z., Liu, W., Bai, L. (2006). 'Helium and carbon isotopic compositions of thermal springs in the earthquake zone of Sichuan, Southwestern China.' Journal of Asian Earth Sciences, 26(5), 533-539. Ellins, K. K., Mas, R., Lee, R. (1990). 'Usung 222Rn to Examine Groundwater/Surface Discharge InteR.Action in the Rio Grande De Manati, Puerto Rico.' Journal of Hydrology, 115(1-4), 319-341. Fu, C.C., Yang, T. F., Du, J., Walia, V., Chen, Y. G., Liu, T. K., Chen, C. H. (2008). 'Variations of helium and Radon concentrations in soil gases from an active fault zone in southern Taiwan.' Radiation Measurements, 43, S348-S352. Gautheron, C., Moreira, M. (2002). 'Helium signature of the subcontinental lithospheric mantle.' Earth and Planetary Science Letters, 199(1), 39-47. Hameed, A. S., Resmi, T.R., Suraj, S., Warrier, C. U., Sudheesh, M., Deshpande, R.D. (2015). 'Isotopic characterization and mass balance reveals groundwater recharge pattern in Chaliyar river basin, Kerala, India.' Journal of Hydrology: Regional Studies, 4, 48-58. Han, Y. L., Kuo, M. C. T., Fan, K. C., Chiang, C. J., Lee, Y. P. (2006). 'Radon distribution in groundwater of Taiwan.' Hydrogeology Journal, 14(1-2), 173-179. Hsu, T. L. (1961) 'The artesian water system beneath the Pingtung Valley, southern Taiwan.' Proceedings of the geological society of China, 4, 73-81. Kalbus, E., Reinstorf, F., Schirmer, M. (2006). 'Measuring methods for groundwater_surface water interactions.' Hydrology and Earth System Sciences Discussions, 10(6), 873-887. Kennedy, B. M., Kharaka, Y. K., Evans, W. C., Ellwood, A., DePaolo, D. J., Thordsen, J., Ambats, G., Mariner, R. H. (1997). 'Mantle Fluids in the San Andreas Fault System, California.' Science, 278(5341), 1278-1281. Kulongoski, J. T., Hilton, D. R., Izbicki, J. A. (2005). 'Source and movement of helium in the eastern Morongo groundwater Basin: The influence of regional tectonics on crustal and mantle helium fluxes.' Geochimica et cosmochimica Acta, 69(15), 3857-3872. Kuo, T., Lin, C., Su, C., Liu, C., Lin, C. H., Chang, C., Chiang, C. (2011). 'Correlating recurrent Radon precursors with local earthquake magnitude and crust stR.Ain near the Chihshang fault of eastern Taiwan.' Natural hazards, 59(2), 861-869. Kuo, T., Su, C., Chang, C., Lin, C., Cheng, W., Liang, H., Lewis, C., Chiang, C. (2010). 'Application of recurrent Radon precursors for forecasting large earthquakes (Mw > 6.0) near Antung, Taiwan.' Radiation Measurements, 45(9), 1049-1054. Liu, Y., Yamanaka, T. (2012). 'Tracing groundwater recharge sources in a mountain–plain transitional area using stable isotopes and hydrochemistry.' Journal of hydrology, 464, 116-126. Marghade, D., Malpe, D. B., Zade, A. B. (2012). 'Major ion chemistry of shallow groundwater of a fast growing city of central India.' Environmental monitoring and assessment, 184(4), 2405-2418. McCarthy, K. A., McFarland, W. D., Wilkinson, J. M., White, L. D. (1992). 'The dynamic relationship between ground water and the Columbia River: using deuterium and oxygen-18 as tracers.' Journal of Hydrology, 135(1-4), 1-12. Ozima, M., Podosek, F. A. (2002). 'Noble gas geochemistry'. Cambridge University Press. Pinti, D. L., Retailleau, S., Barnetche, D., Moreira, F., Moritz, A. M., Larocque, M., G eぴelinas, Y., Lefebvre, R., H eぴelie, J. F., Valadez, A. (2014). '222Rn activity in groundwater of the St. Lawrence Lowlands, Quebec, eastern Canada: relation with local geology and health hazard.' Journal of environmental R.Adioactivity, 136, 206-217. Reimer, G. M. (1980). 'Use of soil-gas helium concentrations for earthquake prediction: Limitations imposed by diurnal variation.' Journal of Geophysical Research: Solid Earth, 85(B6), 3107-3114. Saal, A. E., Van Orman, J. A. (2004). 'The 226Ra enrichment in oceanic basalts: Evidence for melt-cumulate diffusive interaction processes within the oceanic lithosphere.' Geochemistry, Geophysics, Geosystems, 5(2). Sano, Y., Wakita, H. (1985). 'Geographical Distribution of 3He/4He ratios in Japan: Implications for Arc Tectonic and Incipient Magmatism.' J. Geophys. Res, 90(B10), 8729-8741. Sano, Y., Nakamura, Y., Wakita, H. (1986). '3He/4He ratio anomalies associated with the 1984 Western Nagano Earthquake: Possibly induced by a diapiric magma.' Journal of Geophysical Research: Solid Earth, 91(B12), 12291-12295. Singhal, B. B. S., Gupta, R. P. (2010). 'Applied hydrogeology of fractured rocks.' Springer Science & Business Media. Walia, V., Yang, T. F., Hong, W. L., Lin, S. J., Fu, C. C., Wen, K. L., Chen, C. H. (2009). 'Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan.' Applied Radiation and Isotopes, 67(10), 1855-1863. Wang, C. H., Kuo, C.H., Peng, T. R., Chen, W. F., Liu, T. K., Chiang, C. J., Liu, W. C., Hung, J. J. (2001). 'Isotope Characteristic Of Taiwan Groundwaters.' Western Pacific Earth Sciences, 1(4), 415-428. Yang, T. F., Chou, C. Y., Chen, C. H., Chyi, L. L., Jiang, J. H. (2003). 'Exhalation of radon and its carrier gases in SW Taiwan.' Radiation Measurements, 36(1), 425-429. Yang, T. F., Walia, V., Chyi, L. L., Fu, C. C., Chen, C. H., Liu, T. K., Song, S.R., Lee, C.Y., Lee, M. (2005). 'Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan.' Radiation Measurements, 40(2), 496-502. Yang, T. F., Wen, H. Y., Fu, C. C., Lee, H. F., Lan, T. F., Chen, A. T., Hong, W. L., Lin, S. J., Walia, V. (2011). 'Soil radon flux and concentration in hydrothermal area of the Tatun Volcano Group, Northern Taiwan.' Geochemical Journal, 45(6), 483-490. Yang, T. F., Lan, T. F., Lee, H. F., Fu, C. C., Chuang, P. C., Lo, C. H., Chen, C. H., Chen, C. T. A., Lee, C. S. (2005) 'Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications.' Geochemical Journal, 39(5), 469-480. 吳念儒 (2009).'綠島火山岩中晶體與溫泉噴氣氦同位素比值之研究' 國立臺灣大學理學院地質科學研究所碩士論文. 林榮潤,許世孟,林燕初,黃智昭 (2012). '流域岩層水文地質單元調查技術'中興工程, (116), 45-54. 徐年盛,江崇榮,汪中和,劉振宇,劉宏仁,黃建霖 (2001). '地下水系統水平衡分析與補注源水量推估之研究' Journal of the Chinese Institute of Civil and Hydraulic Engineering, 23(4), 347-357. 許世孟,柯建仲,陳耐錦,冀樹勇 (2014). '台灣山區地下水資源調查與評估技術之建立'中興工程, (123), 92-97. 許世孟(2015). '各站址調查成果說明'臺灣南段山區地下水資源調查計畫- 臺灣南段山區流域水文地質調查及圖幅繪編(2/4) (第二年度) 莊謹綸 (2015).'台灣中部山區地下水及河流之地球化學示蹤劑研究'國立臺灣大學理學院地質科學研究所碩士論文. 陳艾荻 (2010).'台灣溫泉水中溶解氣成分研究'國立臺灣大學理學院地質科學研究所碩士論文. 陳清江,黃景鐘,葉錦勳 (2001).'台灣地區天然背景輻射介紹'物理雙月刊. 連結. 彭宗仁 (1995). '宜蘭地區天水和地下水中穩定碳, 氫, 氧及放射性碳, 氚之環境同位素硏究'國立臺灣大學理學院地質科學研究所博士論文. 張雅緻 (2015).'台北盆地地下水之地球化學特徵及其隱示'國立臺灣大學理學院地質科學研究所碩士論文. 經濟部中央地質調查所 (2014). '屏東平原地下水補注地質敏感區劃定計畫書' 地下水補注地質敏感區劃定計畫書 G0002 屏東平原. 經濟部中央地質調查所 (2015). '台灣南段山區流域水文地質調查及圖幅繪編_期末報告'臺灣南段山區地下水資源調查計畫- 臺灣南段山區流域水文地質調查及圖幅繪編(2/4) (第二年度). 經濟部水利署 (1993). '台灣地區新建地下水觀測井之地下水水質試驗分析' MOEA/WRA-920019V2. 蔡光榮,陳穎慧,江介倫,陳怡睿,陳昆廷 (2014).'極端氣候變遷下高屏溪流域水文與地文環境之變異性調查分析' 鑛冶: 中國鑛冶工程學會會刊, (225), 45-61. 賴典章,費立沅,江崇榮 (2003).'台灣地區地下水分區特性'經濟部中央地質調查所,目錄(2003),1. 簡銘成,杜永昌,汪中和,丁澈士 (2011).'應用氫氧穩定同位素分析地下水補注之研究'農業工程學報, 57(3), 61-74. 簡銘成,杜永昌,丁澈士,汪中和 (2011).'氫氧穩定同位素分析林邊溪流域水文環境變化之研究' Journal of Taiwan Water Conservancy, 59(3). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49310 | - |
dc.description.abstract | 台灣的年降雨量約為2500mm,為全球年降雨量平均的2.5倍,中央山脈南部的高屏溪流域山區支流較少、流域面積大。本研究首次利用高屏溪山區地下水與地表水中的溶解氣體與水化學的分析探討該區含水層的特性,以利未來水資源的利用﹔共採集9個地下水和19個地表水(溪水)以及3個溫泉水,另在平原區共採集6個地下水和2個地表水以作比對。全部的樣品均分析其氫氧同位素、溶解氣(氮氣、氧氣、氬氣、甲烷和二氧化碳)、惰性氣體(氦氣、氡氣) 和主要離子成分。
地表水氫氧穩定同位素值(δ18O與δD)的投影均落於區域天水線上,顯示為天水來源。溶解氣體成分主要為氮氣(>90%)和氧氣(>5%),餘皆<1% ﹔氦同位素比值接近1RA(RA為空氣中氦-3/氦-4比值)﹔大多數水氡值皆小於偵測極限(0.2 Bq/L) ,只有寶來和廣林測站測得0.4和0.6 Bq/L,顯示附近有地下水的顯著補注 ﹔主要離子濃度皆低(Na+ <20 mg/L, Ca2+ < 60 mg/L, Cl- <2 mg/L),支持地表水補注來源主要為天水。 地下水氫氧同位素值也皆落於區域天水線上﹔氦同位素比值(0.9~0.23 RA)比地表水低,而水氡(0.3~19.6 Bq/L)則明顯高於地表水。部分地下水溶解氣有高含量甲烷(>20%)或二氧化碳(>10%)。有些地下水比其他樣品均溫高約5℃,且含有較高濃度的離子成分(Na+ >500 mg/L, Ca2+ >150 mg/L, Cl- >80 mg/L),呈現和高屏溪山區溫泉相似的水質,但溫度尚未達法定的54℃溫泉標準。 分析結果顯示高屏溪山區許多深層地下水地球化學特徵呈現流動緩慢的滯留性含水層特性,使深層地下水不易流出。山區淺層岩盤因較為破碎或是含有厚層岩屑層,地下水流動性較好,顯示屏東平原地下水主要的補注源除了當地的雨水和溪水外,還有鄰近山區淺層地下水的直接補注。 | zh_TW |
dc.description.abstract | Due to high topographic relief, groundwater is critical for water supply in Taiwan. The mountain region of the Goaping river in southern Taiwan is a large catchment with few tributaries, that makes it a suitable area to understand the potential of groundwater recharge in the mountain area.
The aim of this study is to interpret the characteristic of groundwater in the study area using dissolved gas and water chemistry. Nine groundwater, 19 surface water and three hot spring samples were collected from the mountain region﹔6 groundwater and 2 surface water samples were collected from the plain area. All samples were analyzed for stable hydrogen and oxygen isotopes, dissolved gases (including N2, O2, Ar, CH4 and CO2), noble gases (helium and radon) and major ions dissolved in the water samples. For surface water samples, results of stable hydrogen and oxygen isotopic ratios are plotted on the local meteoric water line. Dissolved gases are dominated by N2 (>90%) and O2 (>5%). Helium isotopic ratio is approximately equal to 1 RA (RA is 3He/4He ratio of air). Radon-222 concentration is below the detection limit (<0.2 Bq/L); and concentrations of major anions and cations are low (Na+ <20 mg/L, Ca2+ < 60 mg/L, Cl- <2 mg/L). All these features indicate that surface water is predominately recharged by local precipitation. For groundwater samples, results of stable hydrogen and oxygen isotopic ratios are also aligned along the local meteoric water line. Helium isotopic ratios (0.90-0.23 RA) are lower, and radon-222 concentrations (0.30-19.6 Bq/L) are much higher than the surface water samples. Some samples show that CH4 (>20%) or CO2 (>10%) are dominated in dissolved gases other than N2, most likely contributed by biogenic or terrigenic sources. On the other hand, samples that have temperature 5℃ higher than the average of other samples, show ion concentration similar to hot springs. In the mountain region of the Goaping river catchment, shallow bedrocks have well developed fractures or thick layer of regolith, which make groundwater discharge more easily to the Pingtung plain. This study suggests that groundwater in the Pingtung plain are recharged not only by local rainfall and river waters, but also by significant amount of shallow groundwater in the mountain area. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:23:09Z (GMT). No. of bitstreams: 1 ntu-105-R02241409-1.pdf: 7427471 bytes, checksum: 13d30497c30d6c429095237c5be4fdb9 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 摘要 7
Abstract 8 第一章 緒論 9 1.1 前言 9 1.2 研究動機與目的 9 第二章 研究區域地質背景 12 2.1 台灣地質概述 12 2.2 高屏溪流域概述 13 2.2.1 高屏溪流域山區地質背景 13 2.2.2 高屏溪流域山區地形概述 16 2.2.3 高屏溪流域山區水系概述 18 2.3 屏東平原區背景概述 20 2.3.1 屏東平原地質概述 20 2.3.2 屏東平原地形概述 22 第三章 前人研究 24 3.1 氫氧同位素 24 3.2 水中溶解氡氣 26 3.3 氦同位素 29 3.4 一般溶解氣 31 3.5 水化學(水中溶解主要離子) 32 第四章 採樣地點與方法 33 4.1 採樣地點 33 4.2 採樣方法 36 第五章 研究原理與方法 40 5.1 氫氧同位素 40 5.2 水中溶解氡氣 41 5.2.1 氡氣簡介 41 5.2.2 儀器分析原理 42 5.2.3 實驗方法與步驟 45 5.3 氦同位素 48 5.3.1 氦同位素的應用 48 5.3.2 氦同位素分析儀器與方法 48 5.3.3 稀有氣體純化系統 49 5.3.4 儀器誤差與校正 52 5.4 一般溶解氣 53 5.5 水中離子濃度 54 5.6 溶解無機碳 56 第六章 分析結果與討論 57 6.1 氫氧同位素分析結果 57 6.2 水中溶解氡氣分析結果 62 6.3 氦同位素 66 6.4 一般溶解氣 69 6.5 水中離子濃度 71 第七章 綜合討論 74 7.1 高屏溪流域山區地下水含水層地球化學特性 74 7.1.1 含水層化學特性 74 7.2 高屏溪山區流域地下水含水層特性 77 7.2.1 高中(KZ)站 77 7.2.2 寶隆(BL)站 81 7.2.3 茂林(ML)站 85 7.2.4 廣林(GL)站 89 7.2.5 三地門(SDM)站 93 7.3 地表水與地下水交互作用 97 7.4 高屏溪流域山區地下水的流動 102 7.5 山區和平原區水體之關係 105 第八章 結論 111 參考文獻 112 | |
dc.language.iso | zh-TW | |
dc.title | 台灣南部高屏溪流域山區地下水與溪水溶解氣和水化學之分析 | zh_TW |
dc.title | Analysis of dissolved gas and water chemistry in mountain region of Goaping river watershed in southern Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉聰桂,彭宗仁,呂學諭 | |
dc.subject.keyword | 地下水,溶解氣體,水中氡氣,氦同位素,氫氧同位素, | zh_TW |
dc.subject.keyword | groundwater,dissolved gas,noble gas,radon in water,3He/4He, | en |
dc.relation.page | 126 | |
dc.identifier.doi | 10.6342/NTU201602912 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-18 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 7.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。