請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49302完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李建南 | |
| dc.contributor.author | Ming-Wei Lin | en |
| dc.contributor.author | 林明緯 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:22:50Z | - |
| dc.date.available | 2016-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-18 | |
| dc.identifier.citation | Aalto K, Maksimow M, Juonala J, Viikari A, Jula M, Kahonen S, Jalkanen O, Raitakari T, and Salmi M : Soluble vascular adhesion protein-1 correlates with cardiovascular risk factors and early atherosclerotic manifestations. Arterioscler Thromb Vasc Biol 2012; 32 (2): 523–532.
Arvilommi A-M, Salmi M, Jalkanen S: Organ-selective regulation of vascular adhesion protein-1 expression in man. Eur J Immunol 1997; 27:1794–1800. Bellamy L, Casas JP, Hingorani AD, et al. Preeclampsia and risk of cardiovascular disease and cancer in later life: systemic review and meta-analysis. BMJ 2007; 335:974. Bernstein IM, Ziegler W, Badger GJ: Plasma volume expansion in early pregnancy. Obstet Gynecol 2001; 97:669. Boomsma F, Bhaggoe UM, van der Houwen AM, van den Meiracker AH: Plasma semicarbazide-sensitive amine oxidase in human (patho)physiology. Biochim Biophys Acta 2003; 1647(1–2): 48–54. Brosens I, Robertson WB & Dixon HG: The physiological response of the vessels of the placental bed to normal pregnancy. J Path Bact 1967; 93, 569–579. Brosens I, Robertson WG & Dixon HG: The role of the spiral arteries in the pathogenesis of pre-eclampsia. Obstet Gynecol Ann 1972; 1, 177–191. Brosens I, Pijnenborg R, Vercruysse L, et al: The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol 2011; 204(3):193. Burton GJ, Woods AW, Jauniaux E, Kingdom JC: Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 2009; 30:473e82. Caradeux J, Serra R, Nien JK, P’erez-Sepulveda A, Schepeler M, Guerra F, Guti’errez J, Mart’ınez J, Cabrera C, Figueroa-Diesel H, Soothill P, Illanes SE: First trimester prediction of early onset preeclampsia using demographic, clinical, and sonographic data: a cohort study. Prenat Diagn 2013; 33: 732–736. Cindrova-Davies T, Spasic-Boskovic O, Jauniaux E, Charnock-Jones DS & Burton GJ: Nuclear factor-κB, p38, and stress-activated protein kinase mitogen-activated protein kinase signaling pathways regulate proinflammatory cytokines and apoptosis in human placental explants in response to oxidative stress: effects of antioxidant vitamins. Am. J. Pathol 2007; 170, 1511–1520. Chantakru S, Miller C, Roach LE, Kuziel WA, Maeda N, Wang WC, Evans SS, Croy BA: Contributions from self-renewal and trafficking to the uterine NK cell population of early pregnancy. J Immunol 2002; 168:22–28. Chaiworapongsa, T. et al.: Soluble adhesion molecule profile in normal pregnancy and pre-eclampsia. J. Matern Fetal Neonatal Med 2002; 12, 19–27. Committee Opinion No. 638: First-Trimester Risk Assessment for Early-Onset Preeclampsia. Obstet Gynecol 2015; 126:e25. Conde AA, Romero R, Roberts JM: Tests to Predict Preeclampsia. In Taylor RN, Roberts JM, Cunningham FG (eds): Chesley’s Hypertensive Disorders in Pregnancy. Amsterdam, Academic Press, 2014. Davidge ST, Groot JM, Taylor RN: Endothelial Cell Dysfunction. In Taylor RN, Roberts JM, Cunningham FG (eds): Chesley’s Hypertensive Disorders in Pregnancy. Amsterdam, Academic Press, 2014. Djurovic S, Schjetlein R, Wisloff F, Haugen G & Berg K: Increased levels of intercellular adhesion molecules and vascular cell adhesion molecules in pre-eclampsia. Br J Obstet Gynaecol 1997; 104, 466–470. Dong H, Burke SD, Croy BA: Vascular addressins in the uterus and pancreas of type 1 diabetic mice in early pregnancy. Placenta 2008; 29:201–209. Duley L, Henderson-Smart DJ, Meher S, King JF: Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev. 2007; CD004659. Fisher S, Roberts JM: The placenta in normal pregnancy and preeclampsia. In Taylor RN, Roberts JM, Cunningham FG (eds): Chesley’s Hypertensive Disorders in Pregnancy, 4th ed. Amsterdam, Academic Press, 2014. Foidart JM, Munaut C, Chantraine F, Akolekar R, Nicolaides KH: Maternal plasma soluble endoglin at 11-13 weeks’ gestation in pre-eclampsia. Ultrasound Obstet Gynecol 2010; 35:680–7. Fraser R, Whitley GS, Johnstone AP, Host AJ, Sebire NJ, Thilaganathan B, Cartwright JE: Impaired decidual natural killer cell regulation of vascular remodelling in early human pregnancies with high uterine artery resistance. J Pathol 2012; 228:322–332. Gokturk C, Nilsson J, Nordquist J, et al.: Overexpression of semicarbazide-sensitive amine oxidase in smooth muscle cells leads to an abnormal structure of the aortic elastic laminas. Am J Pathol 2003; 163: 1921–8. Grundmann M, Woywodt A, Kirsch T, et al.: Circulating endothelial cells: a marker of vascular damage in patients with preeclampsia. Am J Obstet Gynecol 2008; 198: 317.e311–317.e315. Hansen AR, Barnes CM, Folkman J, McElrath TF: Maternal preeclampsia predicts the development of bronchopulmonary dysplasia. J Pediatr 2010; 156: 532–36. Hanssens M, Pijnenborg R, Keirse MJ, Vercruysse L, Verbist L, Van Assche FA: Renin-like immunoreactivity in uterus and placenta from normotensive and hypertensive pregnancies. Eur J Obstet Gynecol Reprod Biol 1998; 81: 177–184. Harris LK, Aplin JD: Vascular remodeling and extracellular matrix breakdown in the uterine spiral arteries during pregnancy. Reprod Sci 2007; 14: 28e34. Jaakkola, K, Jokimaa V, Kallajoki M, Jalkanen S, Ekholm E. Placenta 2000; 21, 133–141. Jalkanen S, Salmi M: Cell surface monoamine oxidases: enzymes in search of a function. EMBO J 2001; 20(15): 3893–3901. Jalkanen S, Karikoski M, Mercier N, Koskinen K, Henttinen T, Elima K, Salmivirta K, and Salmi M: The oxidase activity of vascular adhesion protein-1 (VAP-1) induces endothelial E- and P-selectins and leukocyte binding. Blood 2007; 110: 1864 –1870. Kaplan MA, Kucukoner M, Inal A, Urakci Z, Evliyaoglu O, Firat U, Kaya M, Isikdogan A: Relationship between serum soluble vascular adhesion protein-1 level and gastric cancer prognosis. Oncology Research and Treatment 2014; 37 (6): 340–4. Khong TY, Adema ED, Erwich JJ: On an anatomical basis for the increase in birth weight in second and subsequent born children. Placenta 2003; 24: 348e53. Kovo M, Schreiber L, Ben-Haroush A, et al: Placental vascular lesion differences in pregnancy-induced hypertension and normotensive fetal growth restriction. Am J Obstet Gynecol 2010; 202(6): 561, e1. Levine RJ et al: Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350(7): 672–83. Libby P: Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012; 32:2045–2051. Lykke JA, Langhoff-Roos J, Sibai BM, et al: Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension 2009a; 53:944. Myatt L, Clifton RG, Roberts JM, et al: First-trimester prediction of preeclampsia in nulliparous women at low risk. Obstet Gynecol 2012a; 119 (6). McDonald EA, Wolfe MW: The proinflammatory role of adiponectin at the maternal–fetal interface. Am J Reprod Immunol 2011; 66: 128–136. Madazli R, Budak E, Calay Z, et al: Correlation between placental bed biopsy findings, vascular cell adhesion molecule and fibronectin levels in preeclampsia. Br J Obstet Gynaecol 2000; 107:514. Magpie Trial Follow-up Collaborative Group. The Magpie Trial: a randomized trial comparing magnesium sulphate with placebo for preeclampsia. Outcome for women at 2 years. BJOG 2007; 114:300–309. Martin JN, Hamilton BE, Sutton PD, et al.: Births: final data for 2006. Natl Vital Stat Rep 2009; 57. Marttila-Ichihara F, Auvinen K, ElimaK, Jalkanen S, and Salmi, M: (2009). 'Vascular adhesion protein-1 enhances tumor growth by supporting recruitment of Gr-1+CD11b+ myeloid cells into tumors.' Cancer Res 2009; 69(19): 7875–7883. McElrath TF, Hecht J L, Dammann O, et al: Pregnancy disorders that lead to delivery before the 28th week of gestation: an epidemiologic approach to classification. Am J Epidemiol 2008; 168(9):980. Merinen M, Irjala H, Salmi M, Jaakkola I, Hanninen A, Jalkanen S. Vascular adhesion protein-1 is involved in both acute and chronic inflammation in the mouse. Am J Pathol 2005;166:793–800. Munday J, Kerr S, Ni J, Cornish AL, Zhang JQ, Nicoll G, Floyd H, Mattei MG, Moore P, Liu D, et al.: Identification, characterization and leucocyte expression of Siglec-10, a novel human sialic acid-binding receptor. Biochem J 2001; 355:489–497. Myatt L, Clifton RG, Roberts JM, et al, and the Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network: Can changes in angiogenic biomarkers between the first and second trimesters of pregnancy predict development of pre-eclampsia in a low-risk nulliparous patient population? BJOG 2013; 120: 1183–91. Naruse K, Lash GE, Innes BA, Otun HA, Searle RF, Robson SC, Bulmer JN: Localization of matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitors for MMPs (TIMPs) in uterine natural killer cells in early human pregnancy. Hum Reprod 2009; 24:553– 561. Naruse K, Lash GE, Bulmer JN, Innes BA, Otun HA, Searle RF, Robson SC: The urokinase plasminogen activator (uPA) system in uterine natural killer cells in the placental bed during early pregnancy. Placenta 2009; 30:398–404. National Institute for Health and Clinical Excellence (2013) Hypertension in pregnancy: the management of hypertensive disorders during pregnancy. National Collaborating Centre for Women’s and Children’s Health. Nelson DB, Ziadie MS, McIntire DD, et al: Placental pathology suggesting that preeclampsia is more than one disease. Am J Obstet Gynecol 2014; 210:66.e1, Ness RB, Roberts JM: Heterogeneous causes constituting the single syndrome of preeclampsia: a hypothesis and its implications. Am J Obstet Gynecol 1996; 175(5):1365. Noda K, She H, Nakazawa T, Hisatomi T, Nakao S, Almulki L, Zandi S, Miyahara S, Ito Y, Thomas KL, Garland RC, Miller JW, Gragoudas ES, Mashima Y and Hafezi-Moghadam A : Vascular adhesion protein-1 blockade suppresses choroidal neovascularization. FASEB J 2008; 22(8): 2928-2935. Odibo AO, Zhong Y, Goetzinger KR, Odibo L, Bick JL, Bower CR, Nelson DM: First-trimester placental protein-13, PAPP-A, uterine artery Doppler and maternal characteristics in the prediction of pre-eclampsia. Placenta 2011; 32: 598–602. Oliveira N, Magder LS, Blitzer MG, Baschat AA. First-trimester prediction of pre-eclampsia: external validity of algorithms in a prospectively enrolled cohort. Ultrasound Obstet Gynecol 2014; 44: 279–285. Parra-Cordero M, Rodrigo R, Barja P, Bosco C, Rencoret G, Sepu’ lveda-Martinez A, Quezada S: Prediction of early and late pre-eclampsia from maternal characteristics, uterine artery Doppler and markers of vasculogenesis during first trimester of pregnancy. Ultrasound Obstet Gynecol 2013; 41: 538–544. Pijnenborg R, Vercruysse L, Hanssens M: The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 2006; 27:939e58. Plasencia W, Maiz N, Poon L, Yu C, Nicolaides K H: Uterine artery Doppler at 11 + 0 to 13 + 6 weeks and 21 + 0 to 24 + 6 weeks in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol 2008; 32, 138–146. Poon L, Karagiannis G, Leal A, Romero X, Nicolaides K. Hypertensive disorders in pregnancy: screening by uterine artery Doppler imaging and blood pressure at 11–13 weeks. Ultrasound Obstet Gynecol 2009; 34: 497–502. Poon LCY, Kametas NA, Maiz N, Akolekar R, Nicolaides KH. First-trimester prediction of hypertensive disorders in pregnancy. Hypertension 2009; 53: 812–18. Poon L, Stratieva V, Piras S, Piri S, Nicolaides K. Hypertensive disorders in pregnancy: combined screening by uterine artery Doppler, blood pressure and serum PAPP-A at 11–13 weeks. Prenat Diagn 2010; 30: 216–223. Redman CW, Sacks GP, Sargent IL: Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 1999; 180: 499–506. Redman CW, Sargent IL: Microparticles and immunomodulation in pregnancy and pre-eclampsia. J. Reprod. Immunol 2007; 76, 61–67. Roberts JM, August PA, Bakris G, Barton JR, Bernstein IM: The American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Hypertension in Pregnancy. Obstet Gynecol 2013; 122(5): 1122–1131. Salmi M, Kalimo K, Jalkanen S: Induction and function of vascular adhesion protein-1 at sites of inflammation. J Exp Med 1993, 178: 2255–2260. Salmi M, Tohka S, Berg EL, Butcher EC, Jalkanen S: Vascular adhesion protein-1 (VAP-1) mediates lymphocyte subtype–specific, selectin-independent recognition of vascular endothelium in human lymph nodes. J. Exp. Med 1997; 186: 589–600. Salmi M, Jalkanen S: Cell-surface enzymes in control of leukocyte trafficking. Nat Rev Immunol 2005; 5: 760–71. Salter-Cid LM, et al.: Anti-inflammatory effects of inhibiting the amine oxidase activity of semicarbazide-sensitive amine oxidase. J. Pharmacol. Exp. Ther 2005; 315, 553–562. Saudan P, Brown MA, Buddle ML, Jones M: Does gestational hypertension become preeclampsia? BJOG 1998; 105: 1177–1184. Scazzocchio E, Figueras F, Crispi F, Meler E, Masoller N, Mula R, Gratacos E: Performance of a first-trimester screening of preeclampsia in a routine care low-risk setting. Am J Obstet Gynecol 2013; 208: 203e.1–10. Shaarawy M, Didy HE: Thrombomodulin, plasminogen activator inhibitor type 1 (PAI-1) and fibronectin as biomarkers of endothelial damage in preeclampsia and eclampsia. Int J Gynaecol Obstet 1996; 55:135–139. Sibai BM: Preeclampsia as a cause of preterm and late preterm (near term) births. Semin Perinatol 2006; 30:16–19. Smith DJ, Salmi M, Bono P, Hellman J, Leu T, Jalkanen S: Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule. J Exp Med 1998; 188:17–27. Stolen CM, Madanat R, Marti L, et al.: Semicarbazide sensitive amine oxidase overexpression has dual consequences: insulin mimicry and diabetes like complications. FASEB J 2004; 18:702–704. Stolen CM, Yegutkin GG, Kurkijarvi R, Bono P, Alitalo K, Jalkanen S. Origins of serum semicarbazide-sensitive amine oxidase. Circ Res 2004; 95:50–7. Strand KM, Heimstad R, Iversen AC, et al.: Mediators of the association between pre-eclampsia and cerebral palsy: population based cohort study. BMJ 2013; 347: f4089. Tanaka M, Jaamaa G, Kaiser M, et al.: Racial disparity in hypertensive disorders of pregnancy in New York state: a 10-year longitudinal population-based study. Am J Public Health 2007; 97:163–170. Taylor RN, Varma M, Teng NNH, Roberts JM: Women with preeclampsia have higher plasma endothelin levels than women with normal pregnancies. J Clin Endocrinol Metab 1990;71:1675–1677. Taylor RN, Crombleholme WR, Friedman SA, Jones LA, Casal DC, Roberts JM: High plasma cellular fibronectin levels correlate with biochemical and clinical features of preeclampsia but cannot be attributed to hypertension alone. Am J Obstet Gynecol 1991; 165:895–901. Taylor RN, Roberts JM, Cunningham FG (eds): Chesley’s Hypertensive Disorders in Pregnancy. Amsterdam, Academic Press, 2014. Wagner SJ, Barac S, Garovic VD: Hypertensive pregnancy disorders: current concepts. J Clin Hypertens 2007; 9:560–566. Wang A, Rana S, Karumanchi SA: Preeclampsia: the role of angiogenic factors in its pathogenesis. Physiology (Bethesda) 2009; 24:147–58. Wallace AE, Host AJ, Whitley GS, Cartwright JE: Decidual natural killer cell interactions with trophoblasts are impaired in pregnancies at increased risk of preeclampsia. Am J Pathol 2013; 183:1853–1861. Wu P, van den Berg C, Alfirevic Z, O'Brien S, Rothlisberger M, Baker PN, et al.: Early Pregnancy Biomarkers in Pre-Eclampsia: A Systematic Review and Meta-Analysis. Int J Mol Sci 2015; 16(9):23035–56. Ye C, Ruan Y, Zou L, et al.: The 2011 survey on hypertensive disorders of pregnancy (HDP) in China: prevalence, risk factors, complications, pregnancy and perinatal outcomes. PLoS ONE 2014; 9:e100180. Yu CK, Smith GC, Papageorghiou AT et al.: Fetal medicine foundation second trimester screening Group. An integrated model for the prediction of preeclampsia using maternal factors and uterine artery Doppler velocimetry in unselected low-risk women. Am J Obstet Gynecol 2005; 193: 429–436. Yu PH, Zuo D-M, Davis BA: Characterization of human serum and umbilical artery semicarbazide-sensitive amine oxidase (SSAO). Biochem Pharmacol 1994; 47:1055–9. Yu PH, Zuo D-M: Formaldehyde produced endogenously via deamination of methylamine. A potential risk factor for initiation of endothelial injury. Atherosclerosis 1996; 120: 189– 97. Zeisler H, Llurba E, Chantraine F, et al.: Predictive value of the sFlt-1: V ratio in women with suspected preeclampsia. N Engl J Med 2016; 374:13-22. Zhang J, Meikle S, Trumble A: Severe maternal morbidity associated with hypertensive disorders in pregnancy in the United States. Hypertens Pregnancy 2003; 22:203–212. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49302 | - |
| dc.description.abstract | 在已開發國家,妊娠期高血壓位居孕期母親死亡原因的首位。此外,患有嚴重妊娠期高血壓的母親產下的胎兒約四分之一呈現胎兒窘迫,三分之一為早產兒。早期預測妊娠期高血壓的發生一直是產前檢查的重點之一。已有證據指出,在懷孕早期給予阿斯匹靈可有效降低子癲前症的發生率。學界一直致力於發展能預期妊娠期高血壓的生物指標。 血管黏附蛋白-1 (Vascular adhesion protein-1) 是分子量為170000道爾頓的糖蛋白。位於血管內皮的VAP-1其主要作用為輔助白血球移動,穿越血管至發炎組織。研究指出,血清VAP-1的濃度與活性在許多心血管疾病會發生變化。此外,多個研究也發現VAP-1參與了血管新生的病理機轉。 我們於是假設VAP-1可能是妊娠期高血壓的致病因子之一。希望藉由血清中的VAP-1預測妊娠期高血壓的發生。 我們於2013年至2015年之間針對在台大醫院產檢的孕婦進行一項前瞻性的世代研究。加入研究的541位病患之中,480位有完整的懷孕與生產記錄。26病患發生妊娠期高血壓(佔5.42%),其中12位(佔2.50%)診斷為妊娠高血壓,14位(佔2.92%)診斷為子癲前症。 發生妊娠期高血壓的病患,其發病前第二孕期的平均VAP-1血清濃度(267.92ng/ml, SD=72.84)較正常懷孕病患的數值(307.20 ng/ml, SD=61.14, p=0.0023)為低。第一孕期的平均VAP-1血清濃度也觀測到同樣的情況(313.2 ng/ml vs. 359.5 ng/ml),然而其差異不具統計顯著(p=0.11)。我們使用ROC曲線分析來評估第二孕期的平均VAP-1血清濃度對於妊娠期高血壓的預測能力。結果顯示其ROC曲線下方的面積(AUC)為0.64(95% CI, 0.57-0.80)。若再加上母親是否有高血壓病史,是否曾發生過子癲前症,是否為雙胞胎妊娠,及懷孕前身體質量指數(BMI)等參數,則AUC可達0.83(95% CI, 0.74-0.92)。 總結而言,本研究顯示利用VAP-1血清濃度,母親病史與身體質量指數,可有效預測之後發生妊娠期高血壓的機會。 | zh_TW |
| dc.description.abstract | Hypertensive disorders of pregnancy (HDP) are the leading causes of maternal mortality in developed countries. Additionally, one quarter of the babies born to mothers with preeclampsia, a severe HDP, are growth restricted and one third are premature. Early identification of HDP remains one of the major focuses of antenatal care. Evidence suggests that early administration of low-dose aspirin could reduce the incidence of preeclampsia. Much effort has been made to identify biomarkers that predict hypertensive disorders of pregnancy.
Vascular adhesion protein-1 (VAP-1), a 170-kDa transmembrane homodimer glycoprotein, is a vascular endothelial adhesion molecule involved in leukocyte rolling, adhesion, and transmigration into sites of inflammation. Changes in both serum VAP-1 concentration and activity have been reported in various vascular diseases. VAP-1 is also thought to be involved in neo-angiogenesis of various disease states. We hypothesized that VAP-1 expression may be involved in the development of HDP and that serum VAP-1 concentration may be used as a predictive biomarker of HDP. We conducted a prospective cohort study of pregnant women who underwent prenatal examination at National Taiwan University Hospital (NTUH) from 2013 through 2015. Among 541 patients recruited into the study, pregnancy outcome data were available in 480 patients. HDP developed in 26 (5.42%) subjects, of whom 12 (2.50%) had gestational hypertension and 14 (2.92%) had preeclampsia. Mean VAP-1 serum concentration during the second trimester, before diagnosis of HDP, was significantly lower in HDP cases (267.92 ng/ml, SD=72.84) than in non-affected cases (307.20 ng/ml, SD = 61.14, P = 0.0023). First trimester VAP-1 serum concentration also showed a similar trend but with borderline significance (P = 0.11). The predictive value of second trimester VAP-1 serum concentration was evaluated by receiver-operating characteristic (ROC) curve analysis. When used alone, the area under the ROC curve (AUC) is 0.64 (95% CI, 0.57–0.80) for predicting HDP. When combined with a history of preeclampsia, history of hypertension, higher body mass index (BMI) before pregnancy, and twin pregnancy, AUC scored 0.83 (95% CI, 0.74–0.92) for predicting HDP. In conclusion, effective screening for HDP can be provided by a combination of serum VAP-1 and maternal characteristics. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:22:50Z (GMT). No. of bitstreams: 1 ntu-105-P03421012-1.pdf: 1471073 bytes, checksum: 1068689778185f86642b908ca6dfc449 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 2
1.1 Hypertensive disorders of pregnancy 2 1.2 Prediction of Hypertensive disorders of pregnancy 3 1.3 Pathophysiology of Hypertensive disorders of pregnancy 4 1.4 Biomarkers for prediction of Hypertensive disorders of pregnancy 7 1.5 VAP-1 and Hypertensive disorders of pregnancy 9 1.6 Aim of the study 11 Chapter 2 Material and methods 12 2.1 Study design 12 2.2 Serum VAP-1 concentration ELISA 13 2.3 Statistical analysis 13 2.4 Taiwan Lifestyle Study 14 Chapter 3 Results 16 3.1 Clinical characteristics of study subjects 16 3.2 Serum VAP-1 concentration in pregnancy 17 3.3 The association of serum VAP-1 with clinical characteristics 17 3.4 The association of serum VAP-1 concentration and Hypertensive disorders of pregnancy 18 3.5 Serum VAP-1 in logistic regression models of Hypertensive disorders of pregnancy 18 Chapter 4 Discussion 20 4.1 Clinical characteristics of this cohort 20 4.2 Physiologic change of serum VAP-1 concentration during pregnancy 21 4.3 Lower serum VAP-1 concentration in Hypertensive disorders of pregnancy during early pregnancy 22 4.4 Elevated serum VAP-1 concentration during delivery of Hypertensive disorder patients 25 4.5 Difference in serum VAP-1 concentration in gestational hypertensive and preeclamptic patients 26 4.6 Predictive value of serum VAP-1 26 4.7 Strength and Limitation 28 Chapter 5 Prospect 30 5.1 VAP-1 immunohistochemistry and western blot study of placenta bed during early pregnancy 30 5.2 The clinical value of serum VAP-1 during early pregnancy 30 Chapter 6 Reference 32 Chapter 7 Appendix 41 | |
| dc.language.iso | en | |
| dc.subject | 第二孕期篩檢 | zh_TW |
| dc.subject | 生物標記 | zh_TW |
| dc.subject | 妊娠期高血壓 | zh_TW |
| dc.subject | 預測演算法 | zh_TW |
| dc.subject | 血管黏附蛋白-1 | zh_TW |
| dc.subject | prediction algorithm | en |
| dc.subject | VAP-1 | en |
| dc.subject | Vascular adhesion protein-1 | en |
| dc.subject | Hypertensive disorders of pregnancy | en |
| dc.subject | second trimester screening | en |
| dc.subject | biomarker | en |
| dc.title | 血清VAP-1在妊娠期高血壓的角色 | zh_TW |
| dc.title | The role of serum vascular adhesion protein-1 in
hypertensive disorders of pregnancy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 李弘元 | |
| dc.contributor.oralexamcommittee | 鄭文芳 | |
| dc.subject.keyword | 血管黏附蛋白-1,生物標記,妊娠期高血壓,預測演算法,第二孕期篩檢, | zh_TW |
| dc.subject.keyword | VAP-1,Vascular adhesion protein-1,Hypertensive disorders of pregnancy,second trimester screening,biomarker,prediction algorithm, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU201603260 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 1.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
