Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49298
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫進德(Jin-Der Wen)
dc.contributor.authorJui-Yun Tuen
dc.contributor.author杜睿芸zh_TW
dc.date.accessioned2021-06-15T11:22:40Z-
dc.date.available2025-08-17
dc.date.copyright2020-09-15
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citationAshkin, A. (1970). 'Acceleration and Trapping of Particles by Radiation Pressure.' Physical Review Letters 24(4): 156-159.
Ashkin, A., J. M. Dziedzic, J. E. Bjorkholm and S. Chu (1986). 'Observation of a single-beam gradient force optical trap for dielectric particles.' Opt Lett 11(5): 288.
Bock, L. V., N. Caliskan, N. Korniy, F. Peske, M. V. Rodnina and H. Grubmuller (2019). 'Thermodynamic control of -1 programmed ribosomal frameshifting.' Nat Commun 10(1): 4598.
Bremer, H. and P. P. Dennis (2008). 'Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates.' EcoSal Plus 3(1).
Bustamante, C. (2008). 'In singulo biochemistry: when less is more.' Annu Rev Biochem 77: 45-50.
Cagliani, R., D. Forni, M. Clerici and M. Sironi (2020). 'Coding potential and sequence conservation of SARS-CoV-2 and related animal viruses.' Infect Genet Evol 83: 104353.
Cao, S. and S. J. Chen (2008). 'Predicting ribosomal frameshifting efficiency.' Phys Biol 5(1): 016002.
Chamorro, M., N. Parkin and H. E. Varmus (1992). 'An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA.' Proc Natl Acad Sci U S A 89(2): 713-717.
Chan, J. F., K. H. Kok, Z. Zhu, H. Chu, K. K. To, S. Yuan and K. Y. Yuen (2020). 'Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan.' Emerg Microbes Infect 9(1): 221-236.
Chen, X., M. Chamorro, S. I. Lee, L. X. Shen, J. V. Hines, I. Tinoco, Jr. and H. E. Varmus (1995). 'Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting.' EMBO J 14(4): 842-852.
Chen, Y.-L. (2019). dynamic accommodation of mRNA onto ribosomes facilitates translation initiation doctoral dissertation.
Crick, F. (1970). 'Central dogma of molecular biology.' Nature 227(5258): 561-563.
Dinman, J. D. (2006). 'Programmed Ribosomal Frameshifting Goes Beyond Viruses: Organisms from all three kingdoms use frameshifting to regulate gene expression, perhaps signaling a paradigm shift.' Microbe Wash DC 1(11): 521-527.
Frolova, L. Y., R. Y. Tsivkovskii, G. F. Sivolobova, N. Y. Oparina, O. I. Serpinsky, V. M. Blinov, S. I. Tatkov and L. L. Kisselev (1999). 'Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis.' RNA 5(8): 1014-1020.
Gausing, K. (1982). 'Regulation of ribosome synthesis in E. coli.' Trends in Biochemical Sciences 7(2): 65-67.
Gualerzi, C. O. and C. L. Pon (1990). 'Initiation of mRNA translation in prokaryotes.' Biochemistry 29(25): 5881-5889.
Ha, T. (2014). 'Single-molecule methods leap ahead.' Nat Methods 11(10): 1015-1018.
Hilbers, C. W., P. J. Michiels and H. A. Heus (1998). 'New developments in structure determination of pseudoknots.' Biopolymers 48(2-3): 137-153.
Hirashima, A. and A. Kaji (1973). 'Role of elongation factor G and a protein factor on the release of ribosomes from messenger ribonucleic acid.' J Biol Chem 248(21): 7580-7587.
Hoagland, M. B., M. L. Stephenson, J. F. Scott, L. I. Hecht and P. C. Zamecnik (1958). 'A soluble ribonucleic acid intermediate in protein synthesis.' J Biol Chem 231(1): 241-257.
Ingolia, N. T., G. A. Brar, S. Rouskin, A. M. McGeachy and J. S. Weissman (2012). 'The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments.' Nat Protoc 7(8): 1534-1550.
Ito, K., M. Uno and Y. Nakamura (2000). 'A tripeptide 'anticodon' deciphers stop codons in messenger RNA.' Nature 403(6770): 680-684.
Ivanov, K. A., V. Thiel, J. C. Dobbe, Y. van der Meer, E. J. Snijder and J. Ziebuhr (2004). 'Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase.' J Virol 78(11): 5619-5632.
Kang, H. and I. Tinoco, Jr. (1997). 'A mutant RNA pseudoknot that promotes ribosomal frameshifting in mouse mammary tumor virus.' Nucleic Acids Res 25(10): 1943-1949.
Kelly, J. A., A. N. Olson, K. Neupane, S. Munshi, J. S. Emeterio, L. Pollack, M. T. Woodside and J. D. Dinman (2020). 'Structural and functional conservation of the programmed −1 ribosomal frameshift signal of SARS-CoV-2.' bioRxiv: 2020.2003.2013.991083.
Korostelev, A., H. Asahara, L. Lancaster, M. Laurberg, A. Hirschi, J. Zhu, S. Trakhanov, W. G. Scott and H. F. Noller (2008). 'Crystal structure of a translation termination complex formed with release factor RF2.' Proc Natl Acad Sci U S A 105(50): 19684-19689.
Kozak, M. (1999). 'Initiation of translation in prokaryotes and eukaryotes.' Gene 234(2): 187-208.
La Teana, A., C. L. Pon and C. O. Gualerzi (1993). 'Translation of mRNAs with degenerate initiation triplet AUU displays high initiation factor 2 dependence and is subject to initiation factor 3 repression.' Proc Natl Acad Sci U S A 90(9): 4161-4165.
Laurberg, M., H. Asahara, A. Korostelev, J. Zhu, S. Trakhanov and H. F. Noller (2008). 'Structural basis for translation termination on the 70S ribosome.' Nature 454(7206): 852-857.
Liu, T., A. Kaplan, L. Alexander, S. Yan, J. D. Wen, L. Lancaster, C. E. Wickersham, K. Fredrick, H. Noller, I. Tinoco and C. J. Bustamante (2014). 'Direct measurement of the mechanical work during translocation by the ribosome.' Elife 3: e03406.
Maaløe, O. (1979). Biological Regulation and Development, Springer.
Melnikov, S., A. Ben-Shem, N. Garreau de Loubresse, L. Jenner, G. Yusupova and M. Yusupov (2012). 'One core, two shells: bacterial and eukaryotic ribosomes.' Nat Struct Mol Biol 19(6): 560-567.
Miller, H., Z. Zhou, J. Shepherd, A. J. M. Wollman and M. C. Leake (2018). 'Single-molecule techniques in biophysics: a review of the progress in methods and applications.' Rep Prog Phys 81(2): 024601.
Neuman, K. C. and A. Nagy (2008). 'Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy.' Nat Methods 5(6): 491-505.
Ogle, J. M. and V. Ramakrishnan (2005). 'Structural insights into translational fidelity.' Annu Rev Biochem 74: 129-177.
Omar, S. I., M. Zhao, R. V. Sekar, S. A. Moghadam, J. A. Tuszynski and M. T. Woodside (2020). 'Modeling the structure of the frameshift stimulatory pseudoknot in SARS-CoV-2 reveals multiple possible conformers.' bioRxiv: 2020.2006.2008.141150.
Petry, S., D. E. Brodersen, F. V. t. Murphy, C. M. Dunham, M. Selmer, M. J. Tarry, A. C. Kelley and V. Ramakrishnan (2005). 'Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon.' Cell 123(7): 1255-1266.
Plant, E. P., G. C. Perez-Alvarado, J. L. Jacobs, B. Mukhopadhyay, M. Hennig and J. D. Dinman (2005). 'A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal.' PLoS Biol 3(6): e172.
Pleij, C. W. (1990). 'Pseudoknots: a new motif in the RNA game.' Trends Biochem Sci 15(4): 143-147.
Rabaan, A. A., S. H. Al-Ahmed, S. Haque, R. Sah, R. Tiwari, Y. S. Malik, K. Dhama, M. I. Yatoo, D. K. Bonilla-Aldana and A. J. Rodriguez-Morales (2020). 'SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview.' Infez Med 28(2): 174-184.
Ritchie, D. B., D. A. Foster and M. T. Woodside (2012). 'Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding.' Proc Natl Acad Sci U S A 109(40): 16167-16172.
Schimmel, P. R. and D. Soll (1979). 'Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs.' Annu Rev Biochem 48: 601-648.
Schmeing, T., Ramakrishnan, V. (2009). 'What recent ribosome structures have revealed about the mechanism of translation.' Nature 461: 1234–1242.
Scott, M., C. W. Gunderson, E. M. Mateescu, Z. Zhang and T. Hwa (2010). 'Interdependence of cell growth and gene expression: origins and consequences.' Science 330(6007): 1099-1102.
Staple, D. W. and S. E. Butcher (2005). 'Pseudoknots: RNA structures with diverse functions.' PLoS Biol 3(6): e213.
Tan, Y. J., S. G. Lim and W. Hong (2005). 'Characterization of viral proteins encoded by the SARS-coronavirus genome.' Antiviral Res 65(2): 69-78.
ten Dam, E. B., C. W. Pleij and L. Bosch (1990). 'RNA pseudoknots: translational frameshifting and readthrough on viral RNAs.' Virus Genes 4(2): 121-136.
Thiel, V., K. A. Ivanov, A. Putics, T. Hertzig, B. Schelle, S. Bayer, B. Weissbrich, E. J. Snijder, H. Rabenau, H. W. Doerr, A. E. Gorbalenya and J. Ziebuhr (2003). 'Mechanisms and enzymes involved in SARS coronavirus genome expression.' J Gen Virol 84(Pt 9): 2305-2315.
van Batenburg, F. H., A. P. Gultyaev and C. W. Pleij (2001). 'PseudoBase: structural information on RNA pseudoknots.' Nucleic Acids Res 29(1): 194-195.
Wu, T.-T. (2018). Exploring how the ribosomal 30S affects two frameshift-stimulating pseudoknot.
Zhong, Z., L. Yang, H. Zhang, J. Shi, J. J. Vandana, D. T. Lam, R. C. Olsthoorn, L. Lu and G. Chen (2016). 'Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for -1 ribosomal frameshifting stimulation.' Sci Rep 6: 39549.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49298-
dc.description.abstract-1計畫性核醣體框架位移 (-1 PRF),對於細菌及病毒是很重要的轉譯機制,在相對較小的基因體中仍可以精確的調控不同蛋白質的比例。坐落於兩個開放閱讀框架之間的偽結或髮夾結構等mRNA的二級結構可以促進框架位移,此外,位於二級結構上游的滑動序列及中間的核苷酸數目也是影響-1 PRF發生的關鍵。-1 PRF的效率也和這些二級結構的穩定性、動態、plasticity (塑性)有高度的相關性。我們想要利用單分子光鉗的技術去研究這些會刺激-1 PRF的偽結結構與核醣體之間的交互作用,解釋-1 PRF的發生機制。
MMTV偽結是由小鼠乳腺腫瘤病毒而來的RNA 偽結,過去的研究指出它可以造成-1 PRF,然而,我們還不知道它的摺疊機制。另一個APK偽結則是由MMTV偽結突變而來的,但是它造成-1 PRF的效率(~2%) 卻比MMTV (~20%) 低許多,我們想要研究它們的摺疊機制以及它們與核醣體間的交互作用去釐清其中的原因。我們分別以30S小次單元以及70S核醣體結合於mRNA偽結結構的上游序列,結果發現這兩個偽結序列所摺疊而成的中間產物比核醣體結合前還少,且與30S結合後的比與70S結合後的更少一些,不過與70S結合的偽結結構穩定性稍微下降。我們推測核醣體會幫助偽結結構的摺疊,但是70S對於結構的影響更大。為了要摺疊成完整的結構,RNA必須和核醣體競爭回前幾個核苷酸,在此過程中可能會刺激-1 PRF的發生。
近幾年爆發的SARS與新冠肺炎(COVID-19)等嚴重的傳染病,分別是由SARS-CoV及 SARS-CoV-2所引起,並且這兩種病毒具有高度的基因相似性,甚至連它們會刺激-1 PRF的偽結結構也只有一個核苷酸之差而已,所造成-1 PRF的效率也相似 (~20%),然而,我們並不太清楚這兩個偽結結構的摺疊機制。我們使核醣體占據mRNA偽結結構的上游序列,去影響偽結結構的摺疊動態,另外也以DNA handle甚至是突變的方式去觀察其改變。
我們推測核醣體會解開偽結中的上游結構,並且刺激下游序列的重新摺疊而促進整個偽結結構的形成,這些動態可能會促使-1 PRF的發生。
zh_TW
dc.description.abstractMinus-one programmed ribosomal frameshifting (-1 PRF) is an important translation mechanism for bacteria and viruses to generate accurate ratios of different proteins from their relatively small genomes. mRNA secondary structures such as pseudoknots (PKs) or hairpins located in the overlapping region between two open reading frames (OPFs) stimulate frameshifting. Besides, the slippery sequence and the spacer nucleotides are crucial to -1 PRF. The efficiency of -1 PRF is highly related to the stability, dynamics and the structural plasticity of these secondary structures. We aim to explore the interaction between the ribosome and -1 PRF-stimulating PKs to elucidate the frameshifting mechanism at the single molecule level by optical tweezers.
The MMTV pseudoknot which was derived from the mouse mammary tumor virus has been studied previously for its role in -1 programmed ribosomal frameshifting. However, the detailed folding mechanism of MMTV is not well understood. APK is another pseudoknot derived from MMTV PK but its efficiency of -1 RPF (~2%) is lower than MMTV PK (~20%). Here, we bound the ribosomal 30S subunits or 70S ribosomes to the mRNA to study the effects of ribosomes on PK folding. In the presence of ribosomes, the intermediate formation ratio of these PK sequences is lower than the naked mRNA, and this ratio for the ribosomal 30S subunits is even lower than for the 70S ribosomes. It indicates that ribosomes stimulate the PK structure folding from the intermediate, and the 70S ribosomes is more influence to the structure. In order to maintain the stability of PK structures, nucleotides originally occupied by the ribosome will be retrieved to form the native PK and even to stimulate -1 PRF, but sometimes the mRNA fails to retrieve and folds intermediates.
Some pandemic diseases outbroke in these years, including SARS and COVID-19 which are caused by SARS-CoV and SARS-CoV-2, respectively. The genomes of SARS-CoV-2 and SARS-CoV are highly similar and their frameshift-stimulating PKs even have only one nucleotide of difference. These two PKs have similar efficiencies of frameshifting (~20%). However, the detailed folding mechanism of these two PKs is not well understood. Therefore, we aim to investigate what factors could affect their folding, such as the bound ribosomes and masking the upstream sequence of PK by DNA handles.
We bound the ribosome to the mRNA such that it would occupy some upstream nucleotides of PK to modulate the folding dynamics of the structure. We also mutated the corresponding nucleotides or cover them by DNA handles for comparison. We found that the folding pathway of PK was altered when its upstream sequence was covered by ribosomes or handles, or mutated. We hypothesize that the ribosome would unwind some upstream nucleotides of the PK structure or its folding intermediates during translation. Then, the downstream sequence is stimulated to refold in a different way, which in turn promotes the formation of the native PK structure. Thus, the nucleotides occupied by the ribosome will be retrieved to stimulate -1 PRF, alternatively, the folding dynamics may stimulate -1 PRF.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:22:40Z (GMT). No. of bitstreams: 1
U0001-1208202016014600.pdf: 9192469 bytes, checksum: 3663e43f0d848ed349e27b9b293de773 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 xi
圖表目錄 xv
Chapter 1 導論 1
1.1 轉譯 1
1.1.1 核醣體與轉譯作用 1
1.1.2 轉譯起始 1
1.1.3 轉譯延長 2
1.1.4 轉譯終止 3
1.2 偽結與計畫性核醣體框架位移的關係 3
1.2.1 計畫性核醣體框架位移 3
1.2.2 偽結 4
1.2.3 小鼠乳腺腫瘤病毒(MMTV)偽結及突變種偽結(VPK與APK) 4
1.2.4 嚴重急性呼吸道傳染病毒(SARS-CoV) 5
1.2.5 新冠肺炎病毒(SARS-CoV-2/COVID-19) 5
1.3 單分子技術 6
1.3.1 簡介 6
1.3.2 應用 6
1.3.3 雷射光鉗 6
1.4 研究動機 7
1.4.1 MMTV和APK偽結的比較 7
1.4.2 SARS-CoV和SARS-CoV-2偽結的比較 7
1.4.3 偽結的摺疊機制與核醣體及-1 PRF的關係 8
Chapter 2 材料與方法 9
2.1.1 勝任細胞品系 9
2.1.2 質體 9
2.1.3 載體DNA序列及引子設計 9
2.1.4 試劑 16
2.1.5 藥品 17
2.1.6 酵素 20
2.1.7 溶液 21
2.2 方法 24
2.2.1 核醣體的純化 24
2.2.2 質體建構 27
2.2.3 細胞外轉譯作用 30
2.2.4 聚合酶連鎖反應製作DNA handle 31
2.2.5 DNA的修飾 33
2.2.6 DNA handle及RNA的黏合反應 33
2.2.7 單分子技術光鉗 34
Chapter 3 MMTV偽結與APK偽結 39
3.1 以力的遞增實驗觀察結構之力與距離分佈 39
3.1.1 MMTV與APK偽結 39
3.1.2 MMTV13偽結與核醣體的交互作用 39
3.1.3 MMTV11偽結與核醣體的交互作用 40
3.1.4 APK13偽結與核醣體交互作用 40
3.1.5 APK11偽結與核醣體交互作用 40
3.2 以定力實驗觀察結構的摺疊 41
3.2.1 MMTV偽結與核醣體的交互作用 41
3.2.2 APK偽結與核醣體的交互作用 42
3.3 討論 43
3.3.1 造成MMTV與APK偽結框架位移效率的差異之可能原因 43
3.3.2 核醣體30S與70S對偽結造成的影響 43
3.3.3 DNA handle與核醣體對結構的影響 44
3.3.4 核醣體與MMTV偽結的交互作用 44
3.3.5 核醣體與APK偽結的交互作用 45
Chapter 4 SARS-CoV偽結與SARS-CoV2偽結 47
4.1 以力的遞增實驗觀察結構之力與距離分佈 47
4.1.1 SARS-CoV與SARS-CoV-2偽結 47
4.1.2 SARS-CoV及SARS-CoV-2偽結中的hairpin 1及hairpin 3 47
4.1.3 SARS-CoV第一個核苷酸突變(SARS-CoV wtm1) 48
4.1.4 核醣體與SARS-CoV及SARS-CoV wtm1 48
4.1.5 以DNA handle延伸進去SARS-CoV結構前三個核苷酸(SARS-CoV et3)及突變前三個核苷酸(SARS-CoV wtm3) 49
4.1.6 SARS-CoV-2與核醣體 49
4.1.7 以DNA handle延伸進去SARS-CoV-2結構前三個核苷酸(SARS-CoV-2 et3) 50
4.1.8 以DNA handle延伸進入SARS-CoV及SARS-CoV-2的3’端破壞偽結結構 50
4.2 以定力實驗觀察結構的摺疊 51
4.2.1 SARS-CoV與 SARS-CoVwtm1偽結 51
4.2.2 SARS-CoV及SARS-CoVwtm1偽結與核醣體 52
4.2.3 SARS-CoV et3及SARS-CoV wtm3偽結 53
4.2.4 核醣體與SARS-CoV-2及SARS-CoV-2 et3偽結 53
4.2.5 SARS-CoV及SARS-CoV-2偽結的hirpin1及hairpin3 54
4.2.6 SARS-CoV及SARS-CoV-2偽結摺疊類偽結結構 55
4.3 討論 55
4.3.1 SARS-CoV及SARS-CoV-2的摺疊機制 55
4.3.2 SARS-CoV及SARS-CoV-2偽結的比較 56
4.3.3 突變、DNA handle與核醣體對於結構的影響 57
4.3.4 偽結和-1 PRF效率的關係 58
Chapter 5 討論 59
5.1 核醣體與偽結結構的交互作用 59
5.2 發生-1 PRF的可能機制 59
5.3 偽結和-1 PRF效率的關係 60
5.4 未來展望 62
參考文獻 64
圖目錄
圖1 -1 PRF示意圖 68
圖2 MMTV mRNA上滑動序列至偽結結構序列 69
圖3 MMTV、VPK和APK偽結的二級結構示意圖及序列 70
圖4 SARS-CoV和SARS-CoV-2 mRNA上滑動序列至偽結結構序列 71
圖5 SARS-CoV和SARS-CoV-2偽結的二級結構示意圖及序列 72
圖6 單分子實驗光鉗與欲測試RNA架設 74
圖7 MMTV結構解旋分析 76
圖8 APK結構解旋分析 77
圖9 核醣體結合位序列設計及光鉗實驗示意圖 78
圖10 MMTV13與核醣體30S設計及結構解旋分析 79
圖11 MMTV13與核醣體70S設計及結構解旋分析 80
圖12 MMTV11與核醣體30S設計及結構解旋分析 81
圖13 MMTV11與核醣體70S設計及結構解旋分析 82
圖14 APK13與核醣體30S設計及結構解旋分析 83
圖15 APK13與核醣體70S設計及結構解旋分析 84
圖16 APK11與核醣體30S設計及結構解旋分析 85
圖17 APK11與核醣體70S設計及結構解旋分析 86
圖17 MMTV偽結的摺疊機制 87
圖19 MMTV偽結在定力下的摺疊速率與過程 89
圖20 APK偽結在定力下的摺疊速率與過程 92
圖21 MMTV與APK偽結的比較 93
圖22 核醣體30S與核醣體70S對偽結的影響 95
圖23 DNA handle與核醣體對偽結結構造成的影響 97
圖24 MMTV偽結與核醣體的交互作用 99
圖25 MMTV偽結的摺疊機制 100
圖26 核醣體參與的MMTV偽結摺疊機制 101
圖27 APK偽結與核醣體的交互作用 102
圖28 核醣體參與的APK偽結摺疊機制 103
圖29 SARS-CoV結構解旋分析 104
圖30 SARS-CoV-2結構解旋分析 105
圖31 SARS-CoV及 SARS-CoV-2解旋與摺疊 107
圖32 SARS-CoV偽結的hairpin1 108
圖33 SARS-CoV偽結的hairpin3 109
圖34 SARS-CoV wtm1設計及結構解旋分析 110
圖35 核醣體與SARS-CoV偽結設計及結構解旋分析 112
圖36 核醣體與SARS-CoV wtm1偽結設計及結構解旋分析 114
圖37 SARS-CoV et3偽結設計及結構解旋分析 116
圖38 SARS-CoV wtm3偽結設計及結構解旋分析 118
圖39 核醣體與SARS-CoV-2偽結設計及結構解旋分析 120
圖40 SARS-CoV-2 et3偽結設計及結構解旋分析 122
圖42 SARS-CoV與SARS-CoV-2偽結摺疊時第一步的距離比例與第二步的時間關係圖 127
圖43 SARS-CoV偽結在不同外力下的摺疊速率與過程 129
圖44 SARS-CoVwtm1偽結在不同外力下的摺疊速率與過程 131
圖45 核醣體結合 SARS-CoV偽結後在不同外力下的摺疊速率與過程 132
圖46 核醣體結合 SARS-CoV wtm1偽結後在不同外力下的摺疊速率與過程 134
圖47 SARS-CoV et3偽結在不同外力下的摺疊速率與過程 136
圖48 SARS-CoV wtm3偽結在不同外力下的摺疊速率與過程 138
圖49 SARS-CoV偽結系列在相同外力下(13pN)的摺疊速率比較 139
圖50 SARS-CoV-2偽結在不同外力下的摺疊速率與過程 141
圖51 核醣體結合 SARS-CoV-2偽結後在不同外力下的摺疊速率與過程 143
圖52 SARS-CoV et3偽結在不同外力下的摺疊速率與過程 144
圖53 SARS-CoV-2偽結系列在相同外力下(13pN)的摺疊速率比較 146
圖54 SARS-CoV及SARS-CoV-2偽結的hairpin 1在不同外力下的摺疊速率與過程 148
圖55 SARS-CoV及SARS-CoV-2偽結的hairpin 3在不同外力下的摺疊與速率 149
圖56 SARS-CoV及SARS-CoV-2偽結摺疊過程中第一步的距離 150
圖57 SARS-CoV及SARS-CoV-2偽結在定力實驗下形成類偽結結構的比例 151
圖58 SARS-CoV及SARS-CoV-2偽結的摺疊機制 152
圖59 SARS-CoV及SARS-CoV-2偽結之比較 153
圖60 SARS-CoV及SARS-CoV-2結構的分布 155
圖61 SARS-CoV及SARS-CoV-2摺疊不同中間產物的比例 156
圖62 核醣體與偽結的交互作用 158
圖63 發生-1 PRF的可能機制 159
圖64 -1 PRF與機械性將偽結結構解開所需的外力與偽結摺疊成中間產物的比例之關係圖 160
圖65 定量-1PRF效率的模型 161
 
圖表目錄
表格 1 MMTV及APK偽結之解旋力、對應之距離變化(未校正)與其摺疊成中間產物的比例統整 163
表格 2 SARS-CoV及SARS-CoV-2偽結之解旋力、對應之距離變化(未校正)統整 164
表格 3 SARS-CoV及SARS-CoV-2不同結構生成之比例統計 165
表格 4 SARS-CoV及SARS-CoV-2偽結生成速率 166
dc.language.isozh-TW
dc.subjectSARS-COV-2zh_TW
dc.subjectMMTVzh_TW
dc.subject核醣體zh_TW
dc.subject偽結zh_TW
dc.subject摺疊動態zh_TW
dc.subject框架位移zh_TW
dc.subject單分子zh_TW
dc.subjectCOVID-19zh_TW
dc.subject光鉗zh_TW
dc.subjectSARS-COVzh_TW
dc.subject新冠病毒zh_TW
dc.subjectSARSzh_TW
dc.subjectAPKzh_TW
dc.subjectpseudoknoten
dc.subject-1 PRFen
dc.subjectribosomeen
dc.subjectMMTVen
dc.subjectAPKen
dc.subjectSARSen
dc.subjectCOVID-19en
dc.subjectSARS-CoVen
dc.subjectSARS-CoV-2en
dc.subjectfolding dynamicen
dc.subjectsingle moleculeen
dc.subjectoptical tweezersen
dc.title利用光鉗技術探討核醣體如何影響誘導框架位移的偽結zh_TW
dc.titleExploring How the Ribosome Affects Frameshift-Stimulating Pseudoknots by Using Optical Tweezersen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊立威(Lee-Wei Yang),張功耀(Kung-Yao Chang)
dc.subject.keyword框架位移,偽結,核醣體,MMTV,APK,SARS,新冠病毒,COVID-19,SARS-COV,SARS-COV-2,摺疊動態,單分子,光鉗,zh_TW
dc.subject.keyword-1 PRF,pseudoknot,ribosome,MMTV,APK,SARS,COVID-19,SARS-CoV,SARS-CoV-2,folding dynamic,single molecule,optical tweezers,en
dc.relation.page166
dc.identifier.doi10.6342/NTU202003117
dc.rights.note有償授權
dc.date.accepted2020-08-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-1208202016014600.pdf
  未授權公開取用
8.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved