Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49294
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張所鋐(Shuo-Hung Chang)
dc.contributor.authorMeng-Lun Hsiehen
dc.contributor.author謝孟倫zh_TW
dc.date.accessioned2021-06-15T11:22:30Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-17
dc.identifier.citation[1] S. Iijima, 'Helical microtubules of graphitic carbon,' nature, vol. 354, pp. 56-58, 1991.
[2] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, 'C 60: buckminsterfullerene,' Nature, vol. 318, pp. 162-163, 1985.
[3] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes vol. 35: World Scientific, 1998.
[4] S. Lijima and T. Ichihashi, 'Single-shell carbon nanotubes of 1-nm diameter,' Nature, vol. 364, p. 737, 1993.
[5] D. Bethune, C. Klang, M. De Vries, G. Gorman, R. Savoy, J. Vazquez, et al., 'Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,' 1993.
[6] J. W. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, 'Electronic structure of atomically resolved carbon nanotubes,' Nature, vol. 391, pp. 59-62, 1998.
[7] R. Saito, M. Fujita, G. Dresselhaus, and u. M. Dresselhaus, 'Electronic structure of chiral graphene tubules,' Applied physics letters, vol. 60, pp. 2204-2206, 1992.
[8] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. Eklund, K. Williams, et al., 'Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,' Science, vol. 275, pp. 187-191, 1997.
[9] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, et al., 'Optical properties of single-wall carbon nanotubes,' Synthetic metals, vol. 103, pp. 2555-2558, 1999.
[10] M. Dresselhaus, G. Dresselhaus, and R. Saito, 'Physics of carbon nanotubes,' Carbon, vol. 33, pp. 883-891, 1995.
[11] S. Farhat, M. L. de La Chapelle, A. Loiseau, C. D. Scott, S. Lefrant, C. Journet, et al., 'Diameter control of single-walled carbon nanotubes using argon–helium mixture gases,' The Journal of Chemical Physics, vol. 115, pp. 6752-6759, 2001.
[12] A. Thess, R. Lee, P. Nikolaev, and H. Dai, 'Crystalline ropes of metallic carbon nanotubes,' Science, vol. 273, p. 483, 1996.
[13] M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, 'Carbon nanotube growth by PECVD: a review,' Plasma Sources Science and Technology, vol. 12, p. 205, 2003.
[14] T. Kato, G.-H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, 'Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition,' Chemical Physics Letters, vol. 381, pp. 422-426, 2003.
[15] Y. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, et al., 'Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method,' Nano Letters, vol. 4, pp. 317-321, 2004.
[16] V. P. Veedu, A. Cao, X. Li, K. Ma, C. Soldano, S. Kar, et al., 'Multifunctional composites using reinforced laminae with carbon-nanotube forests,' Nature materials, vol. 5, pp. 457-462, 2006.
[17] A. Fennimore, T. Yuzvinsky, W.-Q. Han, M. Fuhrer, J. Cumings, and A. Zettl, 'Rotational actuators based on carbon nanotubes,' Nature, vol. 424, pp. 408-410, 2003.
[18] I. Song, Y. Cho, G. Choi, J. Park, and D. Kim, 'The growth mode change in carbon nanotube synthesis in plasma-enhanced chemical vapor deposition,' Diamond and related materials, vol. 13, pp. 1210-1213, 2004.
[19] C. Bower, O. Zhou, W. Zhu, D. Werder, and S. Jin, 'Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition,' Applied Physics Letters, vol. 77, pp. 2767-2769, 2000.
[20] A. Gohier, C. Ewels, T. Minea, and M. Djouadi, 'Carbon nanotube growth mechanism switches from tip-to base-growth with decreasing catalyst particle size,' Carbon, vol. 46, pp. 1331-1338, 2008.
[21] C. Rao and R. Sen, 'Large aligned-nanotube bundles from ferrocene pyrolysis,' Chemical Communications, pp. 1525-1526, 1998.
[22] G. Choi, Y. Cho, S. Hong, J. Park, K. Son, and D. Kim, 'Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition,' Journal of applied physics, vol. 91, pp. 3847-3854, 2002.
[23] Y. Wei, G. Eres, V. Merkulov, and D. Lowndes, 'Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition,' Applied Physics Letters, vol. 78, pp. 1394-1396, 2001.
[24] M. Chhowalla, K. Teo, C. Ducati, N. Rupesinghe, G. Amaratunga, A. Ferrari, et al., 'Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,' Journal of Applied Physics, vol. 90, pp. 5308-5317, 2001.
[25] K. Teo, S. Lee, M. Chhowalla, V. Semet, V. T. Binh, O. Groening, et al., 'Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—how uniform do they grow?,' Nanotechnology, vol. 14, p. 204, 2003.
[26] A. Qiu, D. Bahr, A. Zbib, A. Bellou, S. D. Mesarovic, D. McClain, et al., 'Local and non-local behavior and coordinated buckling of CNT turfs,' Carbon, vol. 49, pp. 1430-1438, 2011.
[27] Y. Saito, T. Yoshikawa, M. Okuda, N. Fujimoto, S. Yamamuro, K. Wakoh, et al., 'Iron particles nesting in carbon cages grown by arc discharge,' Chemical physics letters, vol. 212, pp. 379-383, 1993.
[28] B. Satishkumar, A. Govindaraj, and C. Rao, 'Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ,' Chemical Physics Letters, vol. 307, pp. 158-162, 1999.
[29] T. Mühl, D. Elefant, A. Graff, R. Kozhuharova, A. Leonhardt, I. Mönch, et al., 'Magnetic properties of aligned Fe-filled carbon nanotubes,' Journal of applied physics, vol. 93, pp. 7894-7896, 2003.
[30] A. Leonhardt, M. Ritschel, D. Elefant, N. Mattern, K. Biedermann, S. Hampel, et al., 'Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene,' Journal of applied physics, vol. 98, pp. 074315-074315, 2005.
[31] C. Müller, S. Hampel, D. Elefant, K. Biedermann, A. Leonhardt, M. Ritschel, et al., 'Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties,' Carbon, vol. 44, pp. 1746-1753, 2006.
[32] R. Kozhuharova‐Koseva, M. Hofmann, A. Leonhardt, I. Mönch, T. Mühl, M. Ritschel, et al., 'Relation between Growth Parameters and Morphology of Vertically Aligned Fe‐filled Carbon Nanotubes,' Fullerenes, Nanotubes, and Carbon Nanostructures, vol. 15, pp. 135-143, 2007.
[33] Q. Liu, Z.-G. Chen, B. Liu, W. Ren, F. Li, H. Cong, et al., 'Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures,' Carbon, vol. 46, pp. 1892-1902, 2008.
[34] C. Müller, D. Elefant, A. Leonhardt, and B. Büchner, 'Incremental analysis of the magnetization behavior in iron-filled carbon nanotube arrays,' Journal of Applied Physics, vol. 103, p. 034302, 2008.
[35] C. Shi and H. Cong, 'Tuning the coercivity of Fe-filled carbon-nanotube arrays by changing the shape anisotropy of the encapsulated Fe nanoparticles,' Journal of Applied Physics, vol. 104, p. 034307, 2008.
[36] J. Cheng, X. Zou, G. Zhu, M. Wang, Y. Su, G. Yang, et al., 'Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties,' Solid State Communications, vol. 149, pp. 1619-1622, 2009.
[37] X. Gui, K. Wang, W. Wang, J. Wei, X. Zhang, R. Lv, et al., 'The decisive roles of chlorine-contained precursor and hydrogen for the filling Fe nanowires into carbon nanotubes,' Materials Chemistry and Physics, vol. 113, pp. 634-637, 2009.
[38] C. Müller, A. Leonhardt, M. C. Kutz, B. Büchner, and H. Reuther, 'Growth aspects of iron-filled carbon nanotubes obtained by catalytic chemical vapor deposition of ferrocene,' The Journal of Physical Chemistry C, vol. 113, pp. 2736-2740, 2009.
[39] X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu, et al., 'Rapid growth of well-aligned carbon nanotube arrays,' Chemical Physics Letters, vol. 362, pp. 285-290, 2002.
[40] F. Geng and H. Cong, 'Fe-filled carbon nanotube array with high coercivity,' Physica B: Condensed Matter, vol. 382, pp. 300-304, 2006.
[41] S. Hampel, A. Leonhardt, D. Selbmann, K. Biedermann, D. Elefant, C. Müller, et al., 'Growth and characterization of filled carbon nanotubes with ferromagnetic properties,' Carbon, vol. 44, pp. 2316-2322, 2006.
[42] W. Wang, K. Wang, R. Lv, J. Wei, X. Zhang, F. Kang, et al., 'Synthesis of Fe-filled thin-walled carbon nanotubes with high filling ratio by using dichlorobenzene as precursor,' Carbon, vol. 45, pp. 1127-1129, 2007.
[43] I. Kunadian, R. Andrews, D. Qian, and M. P. Mengüç, 'Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method,' Carbon, vol. 47, pp. 384-395, 2009.
[44] Y. T. Lee, N. S. Kim, J. Park, J. B. Han, Y. S. Choi, H. Ryu, et al., 'Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000 C,' Chemical physics letters, vol. 372, pp. 853-859, 2003.
[45] C.-C. Su and S.-H. Chang, 'Comparison of the efficiency of various substrates in growing vertically aligned carbon nanotube carpets,' Carbon, vol. 49, pp. 5271-5282, 2011.
[46] C. P. Deck and K. Vecchio, 'Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes,' Carbon, vol. 43, pp. 2608-2617, 2005.
[47] B. A. Cola, 'Carbon nanotubes as high performance thermal interface materials,' Electron. Cooling Mag, vol. 16, pp. 10-15, 2010.
[48] L. Qiu, X. Wang, G. Su, D. Tang, X. Zheng, J. Zhu, et al., 'Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film,' Scientific reports, vol. 6, 2016.
[49] P. D. Bradford, X. Wang, H. Zhao, and Y. Zhu, 'Tuning the compressive mechanical properties of carbon nanotube foam,' Carbon, vol. 49, pp. 2834-2841, 2011.
[50] P. D. Bradford, X. Wang, H. Zhao, J.-P. Maria, Q. Jia, and Y. Zhu, 'A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes,' Composites Science and Technology, vol. 70, pp. 1980-1985, 2010.
[51] K. Kordas, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, et al., 'Chip cooling with integrated carbon nanotube microfin architectures,' Applied Physics Letters, vol. 90, p. 123105, 2007.
[52] S. Jiang, C. Liu, and S. Fan, 'Efficient Natural-Convective Heat Transfer Properties of Carbon Nanotube Sheets and Their Roles on the Thermal Dissipation,' ACS applied materials & interfaces, vol. 6, pp. 3075-3080, 2014.
[53] 蕭于哲, '常壓雙層石墨烯的成長與研製,' 臺灣大學機械工程學研究所學位論文, pp. 1-66, 2014.
[54] J.-Y. Hwang, C.-C. Kuo, L.-C. Chen, and K.-H. Chen, 'Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density,' Nanotechnology, vol. 21, p. 465705, 2010.
[55] 陳致中, '可抑制表面自然對流之奈米碳管叢表面隔熱元件,' 臺灣大學機械工程學研究所學位論文, pp. 1-93, 2015.
[56] 陳廷旭, '石墨烯/奈米碳管叢之機械性質研究,' 臺灣大學機械工程學研究所學位論文, pp. 1-86, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49294-
dc.description.abstract自奈米碳管被發現以來,一直是備受矚目的研究對象,其優秀的機械性質使得大眾對於其應用方面備感興趣,而本研究也是其一。
本研究先探討填鐵奈米碳管於純鋁基材上之生長參數,成長出不同高度以及結構之填鐵奈米碳管叢,再以實驗法來探討填鐵奈米碳管叢對於表面自然對流的影響,藉由量測填鐵奈米碳管叢表面散熱情形,比較在相同環境下、無奈米碳管叢之試片量測數據,探討填鐵奈米碳管的散熱能力與特性,並研究不同高度與結構的填鐵奈米碳管叢對表面熱對流之影響。
本研究發現成長填鐵奈米碳管叢在材料表面時,可以增加近30至50%之自然對流熱交換率,且和環境溫差成正相關,亦即試片和環境之溫差愈大,對流效應導致散熱供率增加之效果愈好。而研究也發現,填鐵奈米碳管對於表面熱對流之增幅效應,並不會隨著高度變化而有所改變,將之做為鰭片狀之形貌也無助於增加散熱效率,說明了填鐵奈米碳管對表面對流之增益乃源自其優異的軸向熱傳導特性。
zh_TW
dc.description.abstractThe research of carbon nanotubes (CNTs) has been remarkable since it was discovered. The excellent promising mechanical properties of CNTs are the most interesting reasons to research. So does the motivation of this thesis.
This thesis discusses the growth procedure of the iron-filled CNTs which is synthesized on aluminum substrate. After synthesizing the different heights and structures of iron-filled CNTs, the effect of the natural convection for iron-filled CNTs by experiment processing are also be mentioned. In the same environment, it compares the ability of heat dissipation efficiency which caused by natural convection between the sample of iron-filled CNTs and the other without. After that, there is an analysis of heat dissipation efficiency for the iron-filled CNTs in different heights and structures.
In this research, the material surface with iron-filled CNTs improves heat convection efficiency from 30% to 50%, which is proportional to the temperature difference between the specimen and environment. The effect on the higher iron-filled CNTs is similar, and even the one in fin-like still not able to perform better heat dissipation efficiency. Therefore, we can conclude that the gain of the convection by iron-filled CNTs is due to the outstanding axial thermal conductivity.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:22:30Z (GMT). No. of bitstreams: 1
ntu-105-R03522639-1.pdf: 5364459 bytes, checksum: ec486bc150e3f70cbd1914047dbcc34e (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 奈米碳管 3
2.1.1 奈米碳管基本性質 3
2.1.2 奈米碳管製備方法 8
2.1.3 奈米碳管成長機制 12
2.1.4 填鐵奈米碳管叢 16
2.2 奈米碳管之散熱 19
第三章 實驗架構與原理 27
3.1 實驗設計與架構 27
3.1.1 實驗流程 28
3.1.2 試片設計 30
3.2 基本填鐵奈米碳管叢製備方法 33
3.2.1 填鐵奈米碳管叢製備 33
3.2.2 製備結果分析與檢測 36
3.3 石墨烯製備方法 38
3.3.1 石墨烯製備 38
3.3.2 製備結果檢測 40
3.4 實驗數據分析 41
3.4.1 實驗數據計算 41
3.4.2 誤差來源 42
第四章 實驗結果與討論 44
4.1 填鐵奈米碳管叢製備 44
4.1.1 不同高度之填鐵奈米碳管叢製備 44
4.1.2 不同形貌之填鐵奈米碳管叢製備 56
4.2 銅箔、鋁箔以及填鐵奈米碳管對散熱功率之影響 58
4.2.1 貼鋁箔相較於純銅塊散熱功率之影響 58
4.2.2 貼銅箔相較於貼鋁箔散熱功率之差異 61
4.2.3 填鐵奈米碳管對於散熱功率的影響 64
4.3 填鐵奈米碳管叢高度對散熱功率之影響 67
4.4 填鐵奈米碳管叢表面形貌對散熱功率之影響 71
4.5 填鐵奈米碳管加上石墨烯對散熱功率之影響 73
第五章 結論與未來展望 77
5.1 結論 77
5.2 未來展望 78
參考文獻 79
dc.language.isozh-TW
dc.subject自然對流zh_TW
dc.subject填鐵奈米碳管叢zh_TW
dc.subject散熱zh_TW
dc.subjectIron-filled carbon nanotubeen
dc.subjectNatural convectionen
dc.subjectHeat dissipation efficiencyen
dc.title奈米碳管叢之表面熱對流效率探討zh_TW
dc.titleThermal Convection Using Carbon Nanotube Forest Deviceen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor蘇志中(Chih-Chung Su)
dc.contributor.oralexamcommittee黃昆平(Kun-Ping Huang),施文彬(Wen-Pin Shih)
dc.subject.keyword填鐵奈米碳管叢,自然對流,散熱,zh_TW
dc.subject.keywordIron-filled carbon nanotube,Natural convection,Heat dissipation efficiency,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201603171
dc.rights.note有償授權
dc.date.accepted2016-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
5.24 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved