Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 天文物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49274
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳俊輝(Jiun-Huei Proty Wu)
dc.contributor.authorYu-Chiung Linen
dc.contributor.author林祐群zh_TW
dc.date.accessioned2021-06-15T11:21:44Z-
dc.date.available2019-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-18
dc.identifier.citation[1] Abbott B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116:061102, Feb 2016.
[2] Abbott B. P. et al. GW151226: Observation of gravitational waves from a 22-solarmass binary black hole coalescence. Phys. Rev. Lett., 116:241103, June 2016.
[3] Curt Culter and Kip S. Throne. An overview of gravitational wave sources. In World Scientific, 2002.
[4] F. Acernese et al. Advanced virgo baseline design: Virgo technical report VIR-0027A-09. http://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf, 2009.
[5] Masaki Ando and the TAMA collaboration. Current status of tama. Classical & Quantum Gravity, 19(7):1409, 2002.
[6] Kentaro Somiya. Detector configuration of KAGRA –the Japanese cryogenic gravitational-wave detector. Classical & Quantum Gravity, 29(12):124007, 2012.
[7] S. Hild et al. Sensitivity studies for third-generation gravitational wave observatories. Classical & Quantum Gravity, 28(9):094013, 2011.
[8] C. J. Moore, R. H. Cole, and C. P. L. Berry. Gravitational-wave sensitivity curves. Classical & Quantum Gravity, 32(1):015014, 2015.
[9] Pau Amaro-Seoane et al. eLISA: Astrophysics and cosmology in the millihertz regime. GW Notes, 6:4–110, 2013.
[10] Gregory M Harry, Peter Fritschel, Daniel A Shaddock, William Folkner, and E Sterl Phinney. Laser interferometry for the big bang observer. Classical and Quantum Gravity, 23(15):4887, 2006.
[11] R. S. Foster and D. C. Backer. Constructing a pulsar timing array. Astrophys. J., 361:300–308, 1990.
[12] R. van Haasteren et al. Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data. Mon. Not. Roy. Astron. Soc., 414:3117–3128, 2011.
[13] G. Hobbs. The Parkes Pulsar Timing Array. Classical & Quantum Gravity, 28(9): 094013, 2011.
[14] M. A. McLaughlin. The North American Nanohertz Observatory for Gravitational Waves. Classical & Quantum Gravity, 30(22):224008, 2013.
[15] Peter E. Dewdney et al. The Square Kilometre Array. Proceedings of the IEEE, 97:1482–1496, 2009.
[16] K. Riles. Gravitational waves: Sources, detectors and searches. Progress in Particle and Nuclear Physics, 68:1–54, 2013.
[17] Kazuaki Kuroda, Wei-Tou Ni, and Wei-Ping Pan. Gravitational waves: Classification, methods of detection, sensitivities, and sources. Int. J. Mod. Phys. D, 24(14):1530031, 2015.
[18] Pablo A. Rosado. Gravitational wave background from binary systems. Phys. Rev. D, 84:084004, 2011.
[19] Alison J. Farmer and E. S. Phinney. The gravitational wave background from cosmological compact binaries. Mon. Not. Roy. Astron. Soc., 346:1197–1214, 2003.
[20] I. Kowalska, T. Bulik, and K. Belczynski. Gravitational wave background from population III binaries. Astronomy & Astrophysics, 541(A120), 2012.
[21] Shenghua Yu and C. Simon Jeffery. The gravitational-wave signal generated by a galactic population of double neutron-star binaries. Mon. Not. Roy. Astron. Soc., 448(2):1078–1098, 2015.
[22] Xing-Jiang Zhu, E. Howell, T. Regimbau, D. Blair, and Zong-Hong Zhu. Stochastic gravitational wave background from coalescing binary black holes. Astrophys. J., 739(2):86, 2011.
[23] Xing-Jiang Zhu, E. Howell, D. Blair, and Zong-Hong Zhu. On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers. Mon. Not. Roy. Astron. Soc., 431:882–899, 2013.
[24] A. Sesana et al. The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with pulsar timing arrays. Mon. Not. Roy. Astron. Soc., 390:192–209, 2008.
[25] Alberto Sesana et al. The gravitational wave signal from massive black hole binaries and its contribution to the lisa data stream. Astrophys. J., 623:23–30, 2005.
[26] Alberto Sesana. Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band. Mon. Not. Roy.
Astron. Soc., 433:L1–L5, 2013.
[27] Pablo A. Rosado. Gravitational wave background from rotating neutron stars. Phys. Rev. D, 86:104007, 2012.
[28] Z. Arzoumanian et al. The NANOGrav nine-year data set: Limits on the isotropic stochastic gravitational wave background. Astrophys. J., 821(1):13, 2015.
[29] P. A. R. Ade et al. Planck 2015 results. XIII. cosmological parameters. arXiv: 1502.01589v3, 2015.
[30] E.S. Phinney. A practical theorem on gravitational wave backgrounds. arXiv:astroph/0108028, 2001.
[31] Enrico Barausse. The evolution of massive black holes and their spins in their galactic hosts. Mon. Not. Roy. Astron. Soc., 423:2533–2557, 2012.
[32] Antoine Klein et al. Science with the space-based interferometer elisa. I: Supermassive black hole binaries. Phys. Rev. D, 93:024003, 2016.
[33] Michele Maggiore. Gravitational Waves Volume 1. Theory and Experiments. Oxford University Press, 2007.
[34] Michal Dominik et al. Double compact objects III: Gravitational wave detection rates. Astrophys. J., 806:263, 2015.
[35] Michal Dominik et al. Double compact objects II: Cosmological merger rates. Astrophys. J., 779(2), 2013.
[36] Benjamin Panter et al. The cosmic evolution of metallicity from the SDSS fossil record. Mon. Not. Roy. Astron. Soc., 391:1117–1126, 2008.
[37] C. Kim et al. Implications of PSR J0737-3039B for the galactic NS-NS binary merger rate. Mon. Not. Roy. Astron. Soc., 448:928–938, 2015.
[38] Ravi Kumar Kopparapu et al. Host galaxies catalog used in LIGO searches for compact binary coalescence events. Astrophys. J., 675:1459, 2008.
[39] C. Kim et al. The probability distribution of binary pulsar coalescence rate estimates. II. neutron star-white dwarf binaries. Astrophys. J., 616:1109–1117, 2004.
[40] Carles Badenes and Dan Maoz. The merger rate of binary white dwarfs in the galactic disk. Astrophys. J., 749:L11, 2012.
[41] Paul J. McMillan. Mass models of the Milky Way. Mon. Not. Roy. Astron. Soc., 414:2446–2457, 2011.
[42] Janusz Ziółkowski. Masses of black holes in the universe. Chin. J. Astron. Astrophys., 8, Supplement:273–280, 2008.
[43] J. Casares and P. G. Jonker. Mass measurements of stellar and intermediate-mass black holes. Space Science Reviews, 183:223–252, 2014.
[44] Jerome A. Orosz et al. The mass of the black hole in LMC X-3. Astrophys. J., 794(2): 154, 2014.
[45] Bülent Kiziltan et al. The neutron star mass distribution. Astrophys. J., 778:66, 2013.
[46] Jeff J. Andrews et al. The mass distribution of companions to low-mass white dwarfs. Astrophys. J., 797:L32, 2014.
[47] The data of massive black hole binary coalescence rate is kindly provided by Alberto Sesana in a private communication.
[48] A. W. Steiner et al. Neutron star radii, universal relations, and the role of prior distributions. The European Physical Journal A, 52(2):1–16, 2016.
[49] James M. Lattimer. Neutron star equation of state. New Astronomy Reviews, 54:101–109, 2010.
[50] The 2dFGRS Team. The 2df galaxy redshift survey: near-infrared galaxy luminosity functions. Mon. Not. Roy. Astron. Soc., 326:255–273, 2001.
[51] Vikram Khaire and Raghunathan Srianand. Star formation history, dust attenuation and extragalactic background light. Astrophys. J., 805(1):33, 2015.
[52] A. J. Deutsch. The electromagnetic field of an idealized star in rigid rotation in vacuo. Annales d’Astrophysique, 18:1, 1955.
[53] Z. Arzoumanian, D. F. Chernoff, and J. M. Cordes. The velocity distribution of isolated radio pulsars. Astrophys. J., 568(1):289, 2002.
[54] C. Palomba. Simulation of a population of isolated neutron stars evolving through the emission of gravitational waves. Mon. Not. Roy. Astron. Soc., 359:1150–1164, 2005.
[55] Kent Yagi and Naoki Seto. Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries. Phys. Rev. D, 83:044011, 2011.
[56] Eric Thrane and Joseph D. Romano. Sensitivity curves for searches for gravitationalwave backgrounds. Phys. Rev. D, 88:124032, 2013.
[57] Andrew M. Hopkins and John F. Beacom. On the normalization of the cosmic star formation history. Astrophys. J., 651:142, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49274-
dc.description.abstract我們使用 Pablo A. Rosado 的方法來計算來自雙星系統與旋轉中子星的重力波背景的譜函數,並且使用最近得到的模型與宇宙參數。Rosado 的重疊函數能夠顯示出重力波背景的可解析性與連續性。將我們計算出的不可解析背景和連續背景與觀測實驗的遺棄的靈敏度曲線做比較,我們可以得知該觀測實驗能探測到何種目標的重力波,以及是否會受到不可解析訊號的汙染。從我們的結果可以得知地面探測器不會受到來自雙星系統與旋轉中子星的不可解析背景的干擾。zh_TW
dc.description.abstractWe calculated the gravitational wave background from binary systems and rotating neutron stars using Pablo A. Rosado’s recipes of calculating spectral functions with the latest models and cosmological parameters. The overlap functions in Rosado’s works can characterize the resolvability and continuity of the background. Compare the predicted unresolvable and continuous gravitational wave backgrounds to the sensitivity curves of gravitational wave detectors, we can know from which target the background can be detected by the current and planned detectors, and whether the detector would be contaminate by the unresolvable signals. Our results show that the ground-based detectors are free
from the unresolvable backgrounds both from binary systems and rotating neutron stars.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:21:44Z (GMT). No. of bitstreams: 1
ntu-105-R03244005-1.pdf: 4545568 bytes, checksum: 88f8fb696d986bf05ab6305466656435 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables ix
1 Introduction 1
2 Gravitational-Wave Background 4
2.1 Cosmological model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Spectral function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Resolvability of the background . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Continuity of the background . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Models For The Ensembles: Binaries 14
3.1 Stellar binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 Energy spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Time interval of emission in a frequency bin . . . . . . . . . . . 15
v3.1.3 Maximum and minimum frequencies . . . . . . . . . . . . . . . 16
3.1.4 Coalescence rate . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.5 Overlap function . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.6 Spectral function for stellar binary systems . . . . . . . . . . . . 20
3.1.7 Mass range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Massive black hole binaries . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Models For The Ensembles: Rotating Neutron Stars 26
4.1 Spectral function and overlap function . . . . . . . . . . . . . . . . . . . 26
4.2 Model for the ensemble of rotating neutron stars . . . . . . . . . . . . . . 31
4.2.1 Neutron star model . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Formation rate of neutron stars . . . . . . . . . . . . . . . . . . . 33
4.2.3 Energy evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.4 Magnetic field and ellipticity distributions . . . . . . . . . . . . . 36
5 Results 38
5.1 Total backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Unresolvable backgrounds and the prospects of detection . . . . . . . . . 40
5.3 Continuous backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Backgrounds from each source . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Comparison with previous works . . . . . . . . . . . . . . . . . . . . . . 43
5.5.1 Compare to Rosado’s works . . . . . . . . . . . . . . . . . . . . 43
5.5.2 The unresolvable background . . . . . . . . . . . . . . . . . . . 44
6 Conclusion 49
Bibliography 50
dc.language.isoen
dc.subject靈敏度曲線zh_TW
dc.subject重力波zh_TW
dc.subject雙星系統zh_TW
dc.subject中子星zh_TW
dc.subject譜函數zh_TW
dc.subject重疊函數zh_TW
dc.subject可解析性zh_TW
dc.subject連續性zh_TW
dc.subjectspectral functionen
dc.subjectsensitivity curveen
dc.subjectcontinuityen
dc.subjectresolvabilityen
dc.subjectGravitational wavesen
dc.subjectbinary systemen
dc.subjectneutron staren
dc.subjectoverlap functionen
dc.title雙星系統與旋轉中子星的重力波背景預測zh_TW
dc.titleGravitational Waves Predicted from Stellar Binaries and Rotating Neutron Starsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃崇源(Chorng-Yuan Hwang),吳建宏
dc.subject.keyword重力波,雙星系統,中子星,譜函數,重疊函數,可解析性,連續性,靈敏度曲線,zh_TW
dc.subject.keywordGravitational waves,binary system,neutron star,spectral function,overlap function,resolvability,continuity,sensitivity curve,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201602659
dc.rights.note有償授權
dc.date.accepted2016-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept天文物理研究所zh_TW
顯示於系所單位:天文物理研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved