Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49268
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊雯如(Wen-Ju Yang)
dc.contributor.authorHsueh-Yu Tsengen
dc.contributor.author曾學瑜zh_TW
dc.date.accessioned2021-06-15T11:21:30Z-
dc.date.available2018-08-10
dc.date.copyright2016-11-02
dc.date.issued2016
dc.date.submitted2016-08-18
dc.identifier.citation劉以前、沈火林、石正強. 2006. 番茄果實生長發育過程中糖的代謝. 華北農業學報 21:51-56.
行政院農業委員會. 2015. 農業統計年報.
何小珍、李文汕. 2003. 鹽份處理對番茄植株生育、產量和果實品質之影響. 興大園藝 28:43-53.
邰翔、郭世榮、陳志貴、郭菊葉、朱紅芳、朱為民. 2010. 以耐鹽茄子為砧木的番茄嫁接苗的分析. 江蘇農業學報 26:583-586.
高青海、吳燕、徐坤、高輝遠. 2006. 茄子嫁接苗根系對低溫環境脅迫的響應. 應用生態學報 17:390-394.
張致盛、張林仁. 1998. 兩種速測法在果樹葉片葉綠素含量測定之應用. 台中區農業改良場研究彙報 59:37-45.
許謙信、Jeff G.A.、Peter G.A. 2004. 利用葉綠素計量測菊花葉片之老化. 臺中區農業改良場研究彙報 83:39-51.
農業藥物毒物試驗所. 2016. 植物保護手冊-蔬菜篇.http://www.tactri.gov.tw/wSite/htdocs/ppmtable/vedfr-22.pdf.
劉依昌. 2012. 百年農業點將錄∼臺南區農業改良場小果番茄的研發與推廣. 臺南區農業專訊 79:29-33.
蔡青園、林茂維. 2005. 利用茄子砧木增進番茄及茄子嫁接苗對乾旱及湛水抗性之研究. 植物種苗 7:21-32.
鄭安秀、王仕賢、黃山內. 2001. 番茄嫁接茄子根砧防治土傳病害. 台南區農業專訊 35:1-3.
鮑怡臻. 2014. 小果番茄(Solanum lycopersicum L.)嫁接茄砧及乾旱處理對生育之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
戴順發、宋妤、張武男. 2004. 茄子砧木嫁接番茄之田間應用與展望. 高雄區農業專訊 48:6-7.
戴順發、黃祥益、李文汕、宋妤、張武男. 2003. 茄子砧木嫁接番茄、番椒及茄子之親和力研究. 植物種苗 5:31-46.
戴順發、黃祥益、林正宏、曾夢蛟、張武男. 2005. 茄子砧木嫁接番茄植株生育之研究. 高雄區農業改良場研究彙報 16:41-57.
戴順發、黃祥益、林慧玲、宋妤、張武男. 2006. 茄子砧木對番茄嫁接苗根部活力之影響. 植物種苗 8:13-22.
Abbott, J.D., M.M. Peet, D.H. Willits, D.C. Sanders, and R.E. Gough. 1986. Effects of irrigation frequency and scheduling on fruit production and radial fruit cracking in greenhouse tomatoes in soil beds and in a soil-less medium in bags. Scientia Hort. 28:209-217.
Abdelhafeez, A.T., H. Harssema, and K. Verkerk. 1975. Effects of air temperature, soil temperature and soil moisture on growth and development of tomato itself and grafted on its own and egg-plant rootstock. Scientia Hort. 3:65-73.
Aganon, C.P., L.G. Mateo, D. Cacho, A. Bala Jr, and T.M. Aganon. 2002. Enhancing off-season production through grafted tomato technology. Philipp. J. Crop Sci. 27:3-9.
Allen, K.D. and I.M. Sussex. 1996. Falsiflora and anantha control early stages of floral meristem development in tomato (Lycopersicon esculentum Mill.). Planta 200:254-264.
Atherton, J.G. and J. Rudich. 1986. The tomato crop: a scientific basis for improvement. Chpaman Hall. NY.
Beckles, D.M., N. Hong, L. Stamova, and K. Luengwilai. 2012. Biochemical factors contributing to tomato fruit sugar content: a review. Fruits 67:49-64.
Behboudian, M.H. 1977. Responses of eggplant to drought. I. Plant water balance. Scientia Hort. 7:303-310.
Bertin, N. 2005. Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann. Bot. 95:439-447.
Bertin, N., H. Gautier, and C. Roche. 2002. Number of cells in tomato fruit depending on fruit position and source-sink balance during plant development. Plant Growth Regul. 36:105-112.
Bray, E.A. 1988. Drought-and ABA-induced changes in polypeptide and mRNA accumulation in tomato leaves. Plant Physiol. 88:1210-1214.
Bray, E.A. 1997. Plant responses to water deficit. Trends Plant Sci. 2:48-54.
Bunce, J.A. 1988. Nonstomatal inhibition of photosynthesis by water stress. Reduction in photosynthesis at high transpiration rate without stomatal closure in field-grown tomato. Photosyn. Res. 18:357-362.
Cahn, M.D., E.V. Herrero, B.R. Hanson, R.L. Snyder, T.K. Hartz, and E.M. Miyao. 2002. Effects of irrigation cut-off on processing tomato fruit quality. Acta Hort. 613:75-80.
Dali, N., D. Michaud, and S. Yelle. 1992. Evidence for the involvement of sucrose phosphate synthase in the pathway of sugar accumulation in sucrose-accumulating tomato fruits. Plant Physiol. 99:434-438.
Davies, J.N., G.E. Hobson, and W.B. McGlasson. 1981. The constituents of tomato fruit-the influence of environment, nutrition, and genotype. Crit. Rev. Food Sci. Nutr. 15:205-280.
Dorais, M., D.-A. Demers, A.P. Papadopoulos, and W. Van Ieperen. 2004. Greenhouse tomato fruit cuticle cracking. Hortic. Rev. 30:163-184.
Dorji, K., M.H. Behboudian, and J.A. Zegbe-Dominguez. 2005. Water relations, growth, yield, and fruit quality of hot pepper under deficit irrigation and partial rootzone drying. Scientia Hort. 104:137-149.
Earl, H.J. and M. Tollenaar. 1997. Maize leaf absorptance of photosynthetically active radiation and its estimation using a chlorophyll meter. Crop Sci. 37:436-440.
Ehret, D.L., T. Helmer, and J.W. Hall. 1993. Cuticle cracking in tomato fruit. J. Hort. Sci. 68:195-201.
Ehret, D.L. and L.C. Ho. 1986. The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. J. Hort. Sci. 61:361-367.
Embry, J.L. and E.A. Nothnagel. 1994. Leaf senescence of postproduction poinsettias in low-light stress. J. Am. Soc. Hort. Sci. 119:1006-1013.
Emmons, C.L.W. and J.W. Scott. 1997. Environmental and physiological effects on cuticle cracking in tomato. J. Am. Soc. Hort. Sci. 122:797-801.
Gillaspy, G., H. Ben-David, and W. Gruissem. 1993. Fruits: a developmental perspective. Plant Cell 5:1439.
Guichard, S., N. Bertin, C. Leonardi, and C. Gary. 2001. Tomato fruit quality in relation to water and carbon fluxes. Agronomie 21:385-392.
Hasegawa, P.M., R.A. Bressan, J.K. Zhu, and H.J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Biol. 51:463-499.
Helyes, L., Z. Pek, and A. Lugasi. 2006. Tomato fruit quality and content depend on stage of maturity. HortScience 41:1400-1401.
Heuvelink, E. 1995. Growth, development and yield of a tomato crop: periodic destructive measurements in a greenhouse. Scientia Hort. 61:77-99.
Ho, L.C., R.I. Grange, and A.J. Picken. 1987. An analysis of the accumulation of water and dry matter in tomato fruit. Plant Cell Environ. 10:157-162.
Holbrook, N.M., V.R. Shashidhar, R.A. James, and R. Munns. 2002. Stomatal control in tomato with ABA?deficient roots: response of grafted plants to soil drying. J. Exp. Bot. 53:1503-1514.
Hossain, M.M. and H. Nonami. 2011. Fruit growth of tomato associated with water uptake and cell expansion. Int. J. Agr. Sci. Tech. 7:1049-1062.
Jones, J.B., G.H. Lacy, H. Bouzar, R.E. Stall, and N.W. Schaad. 2004. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst. Appl. Microbiol. 27:755-762.
Kamimura, S., H. Yoshikawa, and K. Ito. 1972. Studies on fruit cracking in tomatoes.
Kawaguchi, M., A. Taji, D. Backhouse, and M. Oda. 2008. Anatomy and physiology of graft incompatibility in solanaceous plants. J. Hort. Sci Biotechnol. 83:581-588.
Lee, J.M., H.J. Bang, and H.S. Ham. 1998. Grafting of Vegetables. J. Japan. Soc. Hort. Sci. 67:1098-1104.
Lue, Y.S., W.L. Deng, Y.F. Wu, A.S. Cheng, S.T. Hsu, and K.C. Tzeng. 2010. Characterization of Xanthomonas associated with bacterial spot of tomato and pepper in Taiwan. Plant Pathol. Bull. 19:181-190.
Luengwilai, K. and D.M. Beckles. 2009. Starch granules in tomato fruit show a complex pattern of degradation. J. Agric. Food Chem. 57:8480-8487.
Maria do Rosario, G.O., A.M. Calado, and C.A.M. Portas. 1996. Tomato root distribution under drip irrigation. J. Am. Soc. Hort. Sci. 121:644-648.
Marschner, H. 2012. Marschner's mineral nutrition of higher plants. Academic press. UK.
Martinez-Ballesta, M.C., C. Alcaraz-Lopez, B. Muries, C. Mota-Cadenas, and M. Carvajal. 2010. Physiological aspects of rootstock–scion interactions. Scientia Hort. 127:112-118.
Martin, B. and N.A. Ruiz-Torres. 1992. Effects of water-deficit stress on photosynthesis, its components and component limitations, and on water use efficiency in wheat (Triticum aestivum L.). Plant Physiol. 100:733-739.
Matthews, M.A. and J.S. Boyer. 1984. Acclimation of photosynthesis to low leaf water potentials. Plant Physiol. 74:161-166.
McCollum, J.P. and J. Skok. 1960. Radiocarbon studies on the translocation of organic constituents into ripening tomato fruits. In “Proceedings. American Society for Horticultural Science”, Vol. 75, pp. 611-16.
Mitchell, J.P., C. Shennan, and S.R. Grattan. 1991. Developmental changes in tomato fruit composition in response to water deficit and salinity. Physiol. Plant. 83:177-185.
Monje, O.A. and B. Bugbee. 1992. Inherent limitations of nondestructive chlorophyll meters: a comparison of two types of meters. HortScience 27:69-71.
Moore, R. 1984. A model for graft compatibility-incompatibility in higher plants. Am. J. Bot.:752-758.
Mounet, F., M. Lemaire-Chamley, M. Maucourt, C. Cabasson, J.-L. Giraudel, C. Deborde, R. Lessire, P. Gallusci, A. Bertrand, and M. Gaudillere. 2007. Quantitative metabolic profiles of tomato flesh and seeds during fruit development: complementary analysis with ANN and PCA. Metabolomics 3:273-288.
Oda, M., M. Maruyama, and G. Mori. 2005. Water transfer at graft union of tomato plants grafted onto Solanum rootstocks. J. Japan. Soc. Hort. Sci. 74:458-463.
Oda, M., M. Nagata, K. Tsuji, and H. Sasaki. 1996. Effects of scarlet eggplant rootstock on growth, yield, and sugar content of grafted tomato fruits. J. Japan. Soc. Hort. Sci.
Ohta, K., T. Hosoki, K. Matsumoto, O. Norihiro, N. Ito, and K. Inaba. 1997. Relationships between fruit cracking and changes of fruit diameter associated with solute flow to fruit in cherry tomatoes. J. Japan. Soc. Hort. Sci. 65:753-759.
Olaiya, C. 2011. Bioregulators favourably affect the levels of vitamins and sugars in tomato fruit tissues. Veg. Crop. Res. Bull. 75:71-79.
Passioura, J.B. 1983. Roots and drought resistance. Agric. Water Manage. 7:265-280.
Patane, C. and S.L. Cosentino. 2010. Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agric. Water Manage. 97:131-138.
Peet, M.M. 1992. Fruit cracking in tomato. HortTechnology 2:216-223.
Peet, M.M. and D.H. Willits. 1995. Role of excess water in tomato fruit cracking. HortScience 30:65-68.
Rajcan, I., L.M. Dwyer, and M. Tollenaar. 1999. Note on relationship between leaf soluble carbohydrate and chlorophyll concentrations in maize during leaf senescence. Field Crops Res. 63:13-17.
Ritchie, D.F. 1995. Bacterial spot. Compendium of Stone Fruit Diseases:50-52.
Schachtman, D.P. and J.Q.D. Goodger. 2008. Chemical root to shoot signaling under drought. Trends Plant Sci. 13:281-287.
Schaffer, A.A. and M. Petreikov. 1997. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol. 113:739-746.
Simonne, E.H. and M. Ozores-Hampton. 2010. Water management for tomato. Florida Tomato Inst. Proc. Univ. Florida Inst. Food Agr. Sci. p. 34-37.
Sobeih, W.Y., I.C. Dodd, M.A. Bacon, D. Grierson, and W.J. Davies. 2004. Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying. J. Exp. Bot. 55:2353-2363.
Thouet, J., M. Quinet, S. Lutts, J.-M. Kinet, and C. Perilleux. 2012. Repression of floral meristem fate is crucial in shaping tomato inflorescence. PLoS One 7:e31096.
Uzun, S. 2007. Effect of light and temperature on the phenology and maturation of the fruit of eggplant (Solanum melongena) grown in greenhouses. N. Z. J. Crop Hortic. Sci. 35:51-59.
van der Ploeg, A. and E. Heuvelink. 2005. Influence of sub-optimal temperature on tomato growth and yield: a review. J. Hort. Sci Biotechnol. 80:652-659.
Welty, N., C. Radovich, T. Meulia, and E. Van Der Knaap. 2007. Inflorescence development in two tomato species. Botany 85:111-118.
White, P.R. 1934. Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol. 9:585.
Wudiri, B.B. and D.W. Henderson. 1985. Effects of water stress on flowering and fruit set in processing-tomatoes. Scientia Hort. 27:189-198.
Yelle, S., R.T. Chetelat, M. Dorais, J.W. DeVerna, and A.B. Bennett. 1991. Sink metabolism in tomato fruit IV. Genetic and biochemical analysis of sucrose accumulation. Plant Physiol. 95:1026-1035.
Zehr, E.I., D.P. Shepard, and W.C. Bridges Jr. 1996. Bacterial spot of peach as influenced by water congestion, leaf wetness duration, and temperature. Plant Dis. 80:339-341.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49268-
dc.description.abstract利用茄子根砧增加番茄(Solanum lycopersicum L.)植株耐淹水性及避免土壤傳播性病害的相關研究已經很多,但針對茄砧與限水對溫室栽培番茄果實品質的影響研究仍較為不足。本研究探討灌溉頻率減半或量減半限水處理下,嫁接‘EG203’茄砧對‘玉女’番茄植株生長、果實產量與品質之影響。參試材料為嫁接茄砧(T/E)番茄,並以自根(T/T)及實生(T)番茄為對照;另外種植‘EG203’茄子(E),作為T/E之根部生長對照。2014-2015年試驗為灌溉頻率減半(FHI)之限水處理,2015-2016年則為灌溉量減半(VHI)限水處理之試驗。T/E植株出現砧負現象,且在兩期試驗皆可觀察到嫁接處水分滯留的情形,而其根部生長遠小於‘EG203’本身之根系,無論有無限水處理,也較T/T 和T為小。限水處理下,T/E葉片相對含水量的變化較T/T、T小。VHI限水處理下,T/E、T/T、T植株之土壤濕度穩定低於全量灌溉組,FHI則變動較大。在FHI處理下,產量、可售果比例降低,裂果率、乾物率增加、總可溶性固形物上升;而VHI處理,產量減少的幅度較FHI小,裂果率低於全量灌溉,乾物率則無顯著差異、總可溶性固形物下降。兩限水處理皆增加可滴定酸濃度及降低果實的糖酸比。T/E對果實產量、總可溶性固形物、可滴定酸與糖酸比影響不大,但可以有效減緩植株缺水時負面影響。綜合以上結果,溫室栽培嫁接‘EG203’茄砧的‘玉女’番茄若利用適當的VHI限水處理,應可提升果實風味、降低裂果率,且能避免產量下降。zh_TW
dc.description.abstractThere was a lot of studies on the effect of using eggplant as the rootstock in tomato cultivation (Solanum lycopersicum L.) to enhance tolerance of waterlogging stress and prevent to soil-borne diseases. However, less was focused on the effect of eggplant rootstock and irrigation restriction on the fruit quality in greenhouse grown tomato. The objective of this research is to clarify the effect on growth, yield and fruit quality of grafting ‘Rosada’ cherry tomato onto ‘EG203’eggplant under frequency-halved irrigation (FHI) or volume-halved irrigation (VHI) treatments. Three plant materials were eggplant-grafted tomato (T/E), self-rooted tomato (T/T), and ungrafted (T) tomato plants. ‘EG203’ eggplant (E) was included as a control root system to T/E plants. The water management strategies were FHI in 2014-2015 trial and VHI in 2015-2016 trial. The scion base showed overgrowth in T/E plant, and had water retention at graft part. The root syetem of T/E was smaller than ‘EG203’ eggplant, and also smaller than T and T/T in regardless of irrigation restrictions. Under irrigation restrictions, the fluctuation of leaf relative water content caused by irrigation of T/E plants was smaller than that of T/T and T. In VHI treatment, the soil moisture was stably maintained lower than fully irrigation; in contrast, FHI treatment was unstable. FHI treatment decreased yield and the percent of marketable fruits, increasing the percent of fruit cracking, the percent of dry matter, and the total soluble solids. VHI treatment also decreased yield, but the impact was smaller than FHI. The percent of fruit cracking under this VHI treatment was decreased, but the percent of dry matter was no significant differences with the controls. The total soluble solids decreased when under VHI treatment. Both irrigation restrictions treatments decreased brix/acidity ratio. T/E retard the negative effect of water shortage on plant growth without affecting the total soluble solids, titratable acidity, and brix/acidity ratio of fruits. Therefore, we concluded that grafting ‘EG203’ eggplant onto ‘Rosada’ tomato with certain level of VHI treatment might enhance fruit flavor and decreasing fruit cracking avoiding without yield decreasing.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:21:30Z (GMT). No. of bitstreams: 1
ntu-105-R03628104-1.pdf: 3623187 bytes, checksum: d9d268860806b83bdf05ee2f8dfac399 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致 謝 i
摘 要 ii
Abstract iii
目 錄 v
圖目錄 viii
表目錄 x
附圖目錄 xiv
附表目錄 xv
前 言 1
第一章 前人研究 3
一、嫁接茄砧對番茄植株生長及果實生產的影響 3
二、番茄植株缺水對生長及果實生產的影響 5
三、乾旱下嫁接茄砧對番茄植株生長及果實生產的影響 7
第二章 材料與方法 9
一、試驗材料 9
二、2014-2015年溫室試驗-嫁接茄砧在灌溉頻率減半之限水處理下對番茄植株生長與生產之影響 9
(一) 試驗地點及栽培方法 9
(二) 限水灌溉處理方法 10
(三) 果實採收 10
三、2015-2016年溫室試驗-嫁接茄砧在灌溉量減半之限水處理下對番茄植株生長與生產之影響 11
(一) 試驗地點及栽培方法 11
(二) 限水灌溉處理方法 11
(三) 果實採收 11
四、調查項目與方法 12
(一) 營養生長調查 12
(二) 產量與果實品質分析 14
五、2015年試驗-嫁接茄砧在灌溉量減半之限水處理下對番茄植株根系之影響 16
(一) 試驗地點及栽培方法 16
(二) 限水灌溉處理方法 17
(三) 根系生長觀察 17
六、統計分析 17
第三章 結果 18
一、嫁接茄砧番茄的植株營養生長狀況 18
(一) 植株外觀 18
(二) 葉片 19
二、生殖生長 21
(一) 果實生產 21
(二) 果實外形與品質 24
第四章 討論 26
一、營養生長 26
(一) 嫁接茄砧對番茄營養生長之影響 26
(二) 限水處理對番茄營養生長之影響 27
二、果實生產與果實品質 29
(一) 嫁接茄砧對番茄果實生產與果實品質之影響 29
(二) 限水處理對番茄果實生產與果實品質之影響 30
第五章 結論 33
參考文獻 110
dc.language.isozh-TW
dc.subject總可溶性固形物zh_TW
dc.subject接穗zh_TW
dc.subject灌溉zh_TW
dc.subject產量zh_TW
dc.subject裂果zh_TW
dc.subjectyielden
dc.subjectfruit crackingen
dc.subjecttotal soluble solidsen
dc.subjectirrigationen
dc.subjectscionen
dc.title水分管理對茄砧嫁接‘玉女’番茄植株生長及果實生產之影響zh_TW
dc.titleThe effect of water management on the growth and fruit production of eggplant-grafted tomato ‘Rosada’en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅筱鳳(Hsiao-Feng Lo),洪進雄(Chin-Hsiung Hung)
dc.subject.keyword接穗,灌溉,產量,裂果,總可溶性固形物,zh_TW
dc.subject.keywordscion,irrigation,yield,total soluble solids,fruit cracking,en
dc.relation.page117
dc.identifier.doi10.6342/NTU201602686
dc.rights.note有償授權
dc.date.accepted2016-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved