Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49232
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張煥宗(Huan-Tsung Chang)
dc.contributor.authorZong-Yu Yangen
dc.contributor.author楊宗諭zh_TW
dc.date.accessioned2021-06-15T11:20:12Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-12
dc.identifier.citation第一章
1. Baker, S. N.; Baker, G. A., Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744.
2. Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.
3. Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S.-Y., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.
4. Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E. P.; Zboril, R.; Rogach, A. L., Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 2014, 9, 590–603.
5. Nie, H.; Li, M.; Li, Q.; Liang, S.; Tan, Y.; Sheng, L.; Shi, W.; Zhang, S. X.-A., Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem. Mater. 2014, 26, 3104–3112.
6. Yang, P.; Zhao, J.; Wang, J.; Cui, H.; Li, L.; Zhu, Z., Pure carbon nanodots for excellent photocatalytic hydrogen generation. RSC Advances 2015, 5, 21332–21335.
7. Wang, Q.; Huang, X.; Long, Y.; Wang, X.; Zhang, H.; Zhu, R.; Liang, L.; Teng, P.; Zheng, H., Hollow luminescent carbon dots for drug delivery. Carbon 2013, 59, 192–199.
8. Li, Q.; Ohulchanskyy, T. Y.; Liu, R.; Koynov, K.; Wu, D.; Best, A.; Kumar, R.; Bonoiu, A.; Prasad, P. N., Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C. 2010, 114, 12062–12068.
9. Qu, K.; Wang, J.; Ren, J.; Qu, X., Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem. Eur. J. 2013, 19, 7243–7249.
10. Ding, H.; Yu, S.-B.; Wei, J.-S.; Xiong, H.-M., Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491.
11. Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P., Photoluminescent carbogenic dots. Chem. Mater. 2008, 20, 4539–4541.
12. Jia, X.; Li, J.; Wang, E., One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 2012, 4, 5572–5575.
13. Mitra, S.; Chandra, S.; Kundu, T.; Banerjee, R.; Pramanik, P.; Goswami, A., Rapid microwave synthesis of fluorescent hydrophobic carbon dots. RSC Adv. 2012, 2, 12129–12131.
14. Arora, N.; Sharma, N. N., Arc discharge synthesis of carbon nanotubes: comprehensive review. Diamond Relat. Mater. 2014, 50, 135–150.
15. Yang, S.-T.; Wang, X.; Wang, H.; Lu, F.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J.-H.; Liu, Y.; Chen, M.; Huang, Y.; Sun, Y.-P., Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C. 2009, 113, 18110–18114.
16. Yao, S.; Hu, Y.; Li, G., A one-step sonoelectrochemical preparation method of pure blue fluorescent carbon nanoparticles under a high intensity electric field. Carbon 2014, 66, 77–83.
17. Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T.-K.; Sun, X.; Ding, Z., An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 2007, 129, 744–745.
18. Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; Vithayathil, S. A.; Kaipparettu, B. A.; Marti, A. A.; Hayashi, T.; Zhu, J.-J.; Ajayan, P. M., Graphene quantum dots derived from carbon fibers. Nano Lett. 2012, 12, 844–849.
19. Sun, D.; Ban, R.; Zhang, P.-H.; Wu, G.-H.; Zhang, J.-R.; Zhu, J.-J., Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 2013, 64, 424–434.
20. Hsu, P.-C.; Chang, H.-T., Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem. Commun. 2012, 48, 3984–3986.
21. Vedamalai, M.; Periasamy, A. P.; Wang, C.-W.; Tseng, Y.-T.; Ho, L.-C.; Shih, C.-C.; Chang, H.-T., Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale 2014, 6, 13119–13125.
22. Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X., Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 2009, 5118–5120.
23. Liu, C.; Zhang, P.; Tian, F.; Li, W.; Li, F.; Liu, W., One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging. J. Mater. Chem. 2011, 21, 13163–13167.
24. Qiao, Z.-A.; Wang, Y.; Gao, Y.; Li, H.; Dai, T.; Liu, Y.; Huo, Q., Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun. 2010, 46, 8812–8814.
25. Shen, L.; Zhang, L.; Chen, M.; Chen, X.; Wang, J., The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging. Carbon 2013, 55, 343–349.
26. Chandra, S.; Patra, P.; Pathan, S. H.; Roy, S.; Mitra, S.; Layek, A.; Bhar, R.; Pramanik, P.; Goswami, A., Luminescent s-doped carbon dots: an emergent architecture for multimodal applications. J. Mater. Chem. B. 2013, 1, 2375–2382.
27. Tan, M.; Zhang, L.; Tang, R.; Song, X.; Li, Y.; Wu, H.; Wang, Y.; Lv, G.; Liu, W.; Ma, X., Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source. Talanta 2013, 115, 950–956.
28. Hu, Y.; Yang, J.; Tian, J.; Jia, L.; Yu, J.-S., Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon 2014, 77, 775–782.
29. da Silva Souza, D. R.; Caminhas, L. D.; de Mesquita, J. P.; Pereira, F. V., Luminescent carbon dots obtained from cellulose. Mater. Chem. Phys. 2018, 203, 148–155.
30. SWAINE, D. J., The trace-element content of fertilizers. Soil Sci. 1962, 94, 134.
31. Rocco, A.; Scott-Fordsmand, J. J.; Maisto, G.; Manzo, S.; Salluzzo, A.; Jensen, J., Suitability of lysosomal membrane stability in Eisenia fetida as biomarker of soil copper contamination. Ecotoxicol. Environ. Saf. 2011, 74, 984–988.
32. Paradelo, M.; Moldrup, P.; Arthur, E.; Naveed, M.; Holmstrup, M.; López-Periago, J. E.; de Jonge, L. W., Effects of past copper contamination and soil structure on copper leaching from soil. J. Environ. Qual. 2013, 42, 1852–1862.
33. Kaler, S. G., ATP7A-related copper transport diseases—emerging concepts and future trends. Nat. Rev. Neurol. 2011, 7, 15–29.
34. Barnham, K. J.; Bush, A. I., Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem. Soc. Rev. 2014, 43, 6727–6749.
35. Dai, B.; Cao, M.; Fang, G.; Liu, B.; Dong, X.; Pan, M.; Wang, S., Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS. J. Hazard. Mater. 2012, 219–220, 103–110.
36. Khazaeli, S.; Nezamabadi, N.; Rabani, M.; Panahi, H. A., A new functionalized resin and its application in flame atomic absorption spectrophotometric determination of trace amounts of heavy metal ions after solid phase extraction in water samples. Microchem. J. 2013, 106, 147–153.
37. Chailapakul, O.; Korsrisakul, S.; Siangproh, W.; Grudpan, K., Fast and simultaneous detection of heavy metals using a simple and reliable microchip-electrochemistry route: An alternative approach to food analysis. Talanta 2008, 74, 683–689.
38. Wang, Y.; Zhu, Y.; Yu, S.; Jiang, C., Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications. RSC Adv. 2017, 7, 40973–40989.
39. Dong, Y.; Wang, R.; Li, G.; Chen, C.; Chi, Y.; Chen, G., Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal. Chem. 2012, 84, 6220–6224.
40. Zong, J.; Yang, X.; Trinchi, A.; Hardin, S.; Cole, I.; Zhu, Y.; Li, C.; Muster, T.; Wei, G., Carbon dots as fluorescent probes for “off–on” detection of Cu2+ and l-cysteine in aqueous solution. Biosens. Bioelectron. 2014, 51, 330–335.
41. Niu, X.; Liu, G.; Li, L.; Fu, Z.; Xu, H.; Cui, F., Green and economical synthesis of nitrogen-doped carbon dots from vegetables for sensing and imaging applications. RSC Adv. 2015, 5, 95223–95229.
42. Ci, J.; Tian, Y.; Kuga, S.; Niu, Z.; Wu, M.; Huang, Y., One-pot green synthesis of nitrogen-doped carbon quantum dots for cell nucleus labeling and copper(II) detection. Chem. Asian J. 2017, 12, 2916–2921.
43. Wu, X.; Wu, L.; Cao, X.; Li, Y.; Liu, A.; Liu, S., Nitrogen-doped carbon quantum dots for fluorescence detection of Cu2+ and electrochemical monitoring of bisphenol A. RSC Adv. 2018, 8, 20000–20006.
44. Ma, X.; Lin, S.; Dang, Y.; Dai, Y.; Zhang, X.; Xia, F., Carbon dots as an “on-off-on” fluorescent probe for detection of Cu(II) ion, ascorbic acid, and acid phosphatase. Anal. Bioanal. Chem. 2019, 411, 6645–6653.
45. Berthon, G., Critical evaluation of the stability constants of metal complexes of amino acids with polar side chains (Technical Report). Pure Appl. Chem. 1995, 67, 1117–1240.
46. Smith, D. S.; Bell, R. A.; Kramer, J. R., Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites. Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 2002, 133, 65–74.
47. Aflaki Jalali, M.; Dadvand Koohi, A.; Sheykhan, M., Experimental study of the removal of copper ions using hydrogels of xanthan, 2-acrylamido-2-methyl-1-propane sulfonic acid, montmorillonite: Kinetic and equilibrium study. Carbohydr. Polym. 2016, 142, 124–132.
48. Fischer, H.; Stern, A., Die Chemie des Pyrrols. Vol. 2, Part 2 Leipzig:Akademische Verlagsgesellschaft. 1940.
49. EHSA ANS Panel (EFSA Panel on Food Additives Nutrient Sources added to food), Scientific opinion on re-evaluation of copper complexes of chlorophylls (E 141(i)) and chlorophyllins (E 141(ii)) as food additives. EFSA Journal 2015, 13, 4151.
50. JECFA, Purity specifications for chlorophyllins, copper complexes sodium and potassium salts. http://www.fao.org/ag/agn/jecfaadditives/specs/monograph5/additive-127-m5.pdf.
51. FDA (United States Food and Drug Administration), Listing of color additives exempt from certification; sodium copper chlorophyllin. 2002.
52. Amakawa, E.; Ogiwara, T.; Takeuchi, M.; Ohnishi, K.; Kano, I., Determination of sodium copper chlorophyllin in foods. Annual Report of the Tokyo Metropolitan Research Laboratory Public Health 1993, 44, 131–137.
53. Inoue, H.; Yamashita, H.; Furuya, K.; Nonomura, Y.; Yoshioka, N.; Lib, S., Determination of copper(II) chlorophyllin by reversed-phase high-performance liquid chromatography. J. Chromatogr., A 1994, 679, 99–104.
54. Scotter, M. J.; Castle, L.; Roberts, D., Method development and HPLC analysis of retail foods and beverages for copper chlorophyll (E141[i]) and chlorophyllin (E141[ii]) food colouring materials. Food Addit. Contam. 2005, 22, 1163–1175.
55. Mortensen, A.; Geppel, A., HPLC–MS analysis of the green food colorant sodium copper chlorophyllin. Innov. Food Sci. Emerg. Technol. 2007, 8, 419–425.
56. Chong, H. S.; Sim, S.; Yamaguchi, T.; Park, J.; Lee, C.; Kim, M.; Lee, G.; Yun, S. S.; Lim, H. S.; Suh, H.-J., Simultaneous determination of sodium iron chlorophyllin and sodium copper chlorophyllin in food using high-performance liquid chromatography and ultra-performance liquid chromatography–mass spectrometry. Food Chem. 2019, 276, 390–396.
第二章
57. Epa, U., Test methods for evaluating solid waste—physical chemical methods, SW-846. Washington [DC]: US Environmental Protection Agency 1997.
58. TFDA (Taiwan Food and Drug Administration), Method of identification for sodium copper chlorophyllin in foods. 2013. https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f636694277490490539.
59. Kuhn, L. P.; Corwin, A. H., The behavior of organic acids and esters in sulfuric acid. J. Am. Chem. Soc. 1948, 70, 3370–3375.
60. Estes, C. S.; Gerard, A. Y.; Godward, J. D.; Hayes, S. B.; Liles, S. H.; Shelton, J. L.; Stewart, T. S.; Webster, R. I.; Webster, H. F., Preparation of highly functionalized carbon nanoparticles using a one-step acid dehydration of glycerol. Carbon 2019, 142, 547–557.
61. Hiremath, C. S.; Tonannavar, J., Vibrational assignments and effect of aldehyde rotation on substituents in some trisubstituted benzaldehydes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 73, 388–397.
62. Lu, Y.; Miller, J. D., Carboxyl stretching vibrations of spontaneously adsorbed and LB-transferred calcium carboxylates as determined by FTIR internal reflection spectroscopy. J. Colloid Interface Sci. 2002, 256, 41–52.
63. Mao, Q.-X.; E, S.; Xia, J.-M.; Song, R.-S.; Shu, Y.; Chen, X.-W.; Wang, J.-H., Hydrophobic Carbon Nanodots with Rapid Cell Penetrability and Tunable Photoluminescence Behavior for in Vitro and in Vivo Imaging. Langmuir 2016, 32, 12221-12229.
64. Wee, S. S.; Ng, Y. H.; Ng, S. M., Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions. Talanta 2013, 116, 71–76.
65. Xu, Q.; Pu, P.; Zhao, J.; Dong, C.; Gao, C.; Chen, Y.; Chen, J.; Liu, Y.; Zhou, H., Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection. J. Mater. Chem. A. 2015, 3, 542–546.
66. Li, C.; Zhang, K.; Yao, C.; Ding, L.; Huang, Y.; Yin, X.; Zhang, J.; Gao, W.; Zhang, J.; Wu, M.; Wang, Y., Altering sub-cellular location for bioimaging by engineering the carbon based fluorescent nanoprobe. Sci. China Mater. 2019, 62, 1496–1504.
67. Ennari, J.; Neelov, I.; Sundholm, F., Molecular dynamics simulation of the PEO sulfonic acid anion in water. Comput. Theor. Polym. Sci. 2000, 10, 403–410.
68. Clark, B.; Frost, T.; Russell, M., UV Spectroscopy: Techniques, instrumentation and data handling. Springer Science Business Media: 1993; Vol. 4.
69. Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S.-Y., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.
70. Bao, L.; Liu, C.; Zhang, Z.-L.; Pang, D.-W., Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667.
71. Nie, H.; Li, M.; Li, Q.; Liang, S.; Tan, Y.; Sheng, L.; Shi, W.; Zhang, S. X.-A., Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem. Mater. 2014, 26, 3104–3112.
72. Qu, D.; Sun, Z.; Zheng, M.; Li, J.; Zhang, Y.; Zhang, G.; Zhao, H.; Liu, X.; Xie, Z., Three colors emission from S, N co-doped graphene quantum dots for visible light H2 production and bioimaging. Adv. Opt. Mater. 2015, 3, 360–367.
73. Chen, Y.; Lian, H.; Wei, Y.; He, X.; Chen, Y.; Wang, B.; Zeng, Q.; Lin, J., Concentration-induced multi-colored emissions in carbon dots: origination from triple fluorescent centers. Nanoscale 2018, 10, 6734–6743.
74. Ding, H.; Yu, S.-B.; Wei, J.-S.; Xiong, H.-M., Full-Color Light-Emitting Carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491.
75. Yeh, T.-F.; Huang, W.-L.; Chung, C.-J.; Chiang, I. T.; Chen, L.-C.; Chang, H.-Y.; Su, W.-C.; Cheng, C.; Chen, S.-J.; Teng, H., Elucidating quantum confinement in graphene oxide dots based on excitation-wavelength-independent photoluminescence. J. Phys. Chem. Lett. 2016, 7, 2087–2092.
76. Asha Jhonsi, M.; Thulasi, S., A novel fluorescent carbon dots derived from tamarind. Chem. Phys. Lett. 2016, 661, 179–184.
77. Ding, H.; Wei, J.-S.; Xiong, H.-M., Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 2014, 6, 13817–13823.
78. Fan, R.-J.; Sun, Q.; Zhang, L.; Zhang, Y.; Lu, A.-H., Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging. Carbon 2014, 71, 87–93.
79. Zheng, M.; Xie, Z., A carbon dots–based nanoprobe for intracellular Fe3+ detection. Mater. Today Chem. 2019, 13, 121–127.
80. Shi, L.; Hou, Z.; Zhang, C.; Zhang, G.; Zhang, Y.; Dong, C.; Shuang, S., Concentration-dependent multicolor fluorescent carbon dots for colorimetric and fluorescent bimodal detections of Fe3+ and l-ascorbic acid. Anal. Methods 2019, 11, 669–676.
81. Wang, C.; Hu, T.; Wen, Z.; Zhou, J.; Wang, X.; Wu, Q.; Wang, C., Concentration-dependent color tunability of nitrogen-doped carbon dots and their application for iron(III) detection and multicolor bioimaging. J. Colloid Interface Sci. 2018, 521, 33–41.
82. Shamsipur, M.; Barati, A.; Taherpour, A. A.; Jamshidi, M., Resolving the multiple emission centers in carbon dots: from fluorophore molecular states to aromatic domain states and carbon-core states. J. Phys. Chem. Lett. 2018, 9, 4189–4198.
83. Barman, M. K.; Mitra, P.; Bera, R.; Das, S.; Pramanik, A.; Parta, A., An efficient charge separation and photocurrent generation in the carbon dot–zinc oxide nanoparticle composite. Nanoscale 2017, 9, 6791–6799.
84. Wang, X.; Xu, X.-C.; Yang, M.; Jiang, P.; Zhao, J.; Jiang, F.-L.; Liu, Y., Concentration-tuned multicolor carbon dots: microwave-assisted synthesis, characterization, mechanism and applications. New J. Chem. 2019, 43, 8950–8957.
85. Zong, J.; Yang, X.; Trinchi, A.; Hardin, S.; Cole, I.; Zhu, Y.; Li, C.; Muster, T.; Wei, G., Carbon dots as fluorescent probes for “off–on” detection of Cu2+ and l-cysteine in aqueous solution. Biosens. Bioelectron. 2014, 51, 330–335.
86. Zu, F.; Yan, F.; Bai, Z.; Xu, J.; Wang, Y.; Huang, Y.; Zhou, X., The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim. Acta 2017, 184, 1899–1914.
87. Orama, M.; Hyvönen, H.; Saarinen, H.; Aksela, R., Complexation of [S,S] and mixed stereoisomers of N,N′-ethylenediaminedisuccinic acid (EDDS) with Fe(III), Cu(II), Zn(II) and Mn(II) ions in aqueous solution. J. Chem. Soc., Dalton Trans. 2002, 4644–4648.
88. Aflaki Jalali, M.; Dadvand Koohi, A.; Sheykhan, M., Experimental study of the removal of copper ions using hydrogels of xanthan, 2-acrylamido-2-methyl-1-propane sulfonic acid, montmorillonite: Kinetic and equilibrium study. Carbohydr. Polym. 2016, 142, 124–132.
89. Ma, X.; Dong, Y.; Sun, H.; Chen, N., Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: the optimization and analysis of the synthetic process. Mater. Today Chem. 2017, 5, 1–10.
90. Liu, L.; Gong, H.; Li, D.; Zhao, L., Synthesis of carbon dots from pear juice for fluorescence detection of Cu2+ ion in water. Nanosci. Nanotechnol. 2018, 18, 5327–5332.
91. Rong, M.-C.; Zhang, K.-X.; Wang, Y.-R.; Chen, X., The synthesis of B, N-carbon dots by a combustion method and the application of fluorescence detection for Cu2+. Chin. Chem. Lett. 2017, 28, 1119–1124.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49232-
dc.description.abstract雖然過去已發表的許多研究利用合成的碳點來檢測銅離子 (Cu2+),且具良好的靈敏度,但這些方法在合成碳點時通常需要昂貴的儀器、高溫和額外提供能量。在檢測Cu2+離子的選擇性上也會受到Ni2+、Co2+、Hg2+等金屬離子的干擾。這些問題可能限制Cu2+離子實際樣品的檢測。而多數碳點在極性低的有機溶劑中分散性不佳,使有機相螢光碳點的特性較少被研究。本研究利用化學氧化法,以三油酸甘油酯為碳源通過濃硫酸的強氧化反應,在室溫下一鍋合成疏水性碳點 (TO-CDs)。TO-CDs具有良好的螢光量子產率 (23.2%),其放光特性具濃度依賴性和激發依賴性。此外,在氫氧化鈉鹼溶液中,TO-CDs表面的酯基可藉由水解反應,使TO-CDs可轉換到水相。基於磺酸基團可貢獻於與Cu2+離子錯合的特性改善檢測Cu2+離子的選擇性。使用TO-CDs檢測Cu2+離子在S/N = 3下的偵測極限為0.21 M (13.3 ppb),線性範圍為0.5–10 M,其定量極限與偵測極限皆低於美國環境保護署飲用水中Cu2+離子的標準 (1.27 ppm)。TO-CDs對於土壤中含量高的金屬具有好的容忍度,因此可用於土壤樣品中Cu2+離子的量測。其回收率介於97.8–99.0%之間,相對標準偏差小於2.04%。另外,TO-CDs也可用於銅葉綠素鈉的檢測,在S/N = 3下的偵測極限為0.61 M (以銅計:38.7 ppb),線性範圍為1.0–10 M,其定量極限與偵測極限皆低於台灣衛生福利部食品藥物管理署定義不含酒精之調味飲料中銅葉綠素鈉的最高含量 (以銅計:64 ppm)。TO-CDs可通過簡單前處理檢測飲料中的銅葉綠素鈉,其回收率介於97.6–103%之間,相對標準偏差小於1.18%。以上結果說明TO-CDs檢測Cu2+離子與銅葉綠素鈉的可靠性相當高,並可能用於水相之外大量分析物的檢測,顯示出快速偵測環境銅離子樣品與檢測食品中銅葉綠素鈉的潛力。zh_TW
dc.description.abstractIn the previous studies, some carbon dots have been synthesized for the detection of copper ions (Cu2+ ions) with high sensitivity. However, the synthesis of carbon dots suffer some disadvantages such as requiring expensive equipment, high temperature, and/or need for additional energy. The detection of Cu2+ ions is easily interfered by Ni2+, Co2+, and Hg2+ ions. The detection of Cu2+ ions in real samples sometimes is limited by these problems. Because most carbon dots have poor dispersibility in nonpolar organic solvents, making the characteristics are rarely studied. In this study, a one-pot and simple chemical oxidation approach was applied for producing hydrophobic carbon dots (TO-CDs) at room temperature from triolein in concentrated sulfuric acid solution. TO-CDs have a fluorescence quantum yield as high as 23.2%, and exhibit concentration-dependent and excitation-dependent emission characteristics. Through the hydrolysis of ester groups on the TO-CDs in NaOH solution, they can be transferred into aqueous phase. Furthermore, the selectivity for the detection of Cu2+ ions is improved by sulfonyl groups which can contribute the coordination ability to Cu2+ ions. TO-CDs as a probe for the detection of Cu2+ ions through the analyte-induced fluorescence quenching with a linear range of 0.5–10 M and a limit of detection (LOD, signal-to-noise = 3) of 0.21 M (13.3 ppb) that is lower than the maximum allowable level (MAL) of copper in drinking water at 1.27 ppm set by the U.S. Environmental Protection Agency (EPA). TO-CDs possess high selectivity toward Cu2+ ions (tolerance at least five-fold relative to other metal ions). We obtained the percent recovery of Cu in the soil samples to be 97.8–99.0% by spikes, and the relative standard deviations (RSDs) are below 2.04%. Additionally, TO-CDs can also be used as a turn-off sensor for the detection of sodium copper chlorophyllin (SCC) with a linear response over the ranges from 1.0–10 M and a LOD of 0.61 M (38.7 ppb), which is lower than the MAL of SCC in non-alcoholic flavored drinks at 64 ppm (for copper) set by Taiwan Food and Drug Administration (TFDA). By applying a simple pretreatment, we obtained the %R of SCC in the drink samples to be 97.6–103% by matrix spikes, and the RSDs are below 1.18%. This simple, sensitive and selective approach, probably the access to a greater range of analytes by extending operation outside of the aqueous phase, appears to have practical potential for the rapid screening of Cu2+ ions in environmental samples and SCC in foods.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:20:12Z (GMT). No. of bitstreams: 1
U0001-1208202017180400.pdf: 2868467 bytes, checksum: 71fe959270da2a5025a800f837adf851 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄
論文口試委員審定書 i
致謝 ii
中文摘要 iv
Abstract vi
目錄 viii
圖目錄 x
表目錄 xi
第一章 緒論 1
1.1碳點介紹 1
1.2碳化方法 2
1.2.1化學氧化法 4
1.3 碳點於重金屬離子檢測 6
1.3.1 銅的檢測 6
1.3.2 碳點檢測銅離子 7
1.4銅葉綠素鈉的檢測 9
1.5研究動機 11
1.6 參考文獻 12
第二章 碳點之合成並應用於銅離子的檢測 20
2.1 實驗材料與方法 20
2.1.1 實驗藥品 20
2.1.2 TO-CDs、TO-CDs-B之製備 21
2.1.3 材料鑑定 21
2.1.4 螢光量子產率的計算 22
2.1.5 利用TO-CDs-B檢測銅離子 22
2.1.6 Cu2+離子真實樣品前處理 23
2.1.7 利用TO-CDs檢測銅葉綠素鈉 23
2.1.8 銅葉綠素鈉真實樣品前處理 24
2.2結果與討論 24
2.2.1 TO-CDs、TO-CDs-B之合成、優化與鑑定 24
2.2.1.1 碳源的選擇 25
2.2.1.2 三油酸甘油酯的最佳化濃度探討 27
2.2.1.3 硫酸的最佳化濃度探討 28
2.2.1.4 TO-CDs、TO-CDs(NaOH)的鑑定 28
2.2.2 TO-CDs的光學性質 30
2.2.3 濃度依賴性放光 31
2.2.4 利用TO-CDs-B檢測銅離子 33
2.2.5 Cu2+離子真實樣品檢測 35
2.2.6 利用TO-CDs檢測銅葉綠素鈉 36
2.2.7 銅葉綠素鈉真實樣品檢測 36
2.3結論 37
2.4 參考文獻 38
2.5 本章圖表 43
 
圖目錄
圖2- 1 合成TO-CDs並應用於Cu2+離子和銅葉綠素鈉 (SCC)檢測之示意圖。 43
圖2-2 不同碳源(a)、(b) 甘油和(c)、(d) 三油酸甘油酯與H2SO4反應後之吸收與螢光光譜。 44
圖2- 3 (a) 0.66 mg/mL TO-CDs、(b) 33 mg/mL TO-CDs、(c) 100 g/mL TO-CDs-B、(d) 100 g/mL TO-CDs-B + 10M Cu2+之TEM影像。 45
圖2- 4 (a) glycerol、(b) glycerol + H2SO4、(c) triolein、(d) TO-CDs、(e) TO-CDs-N、(f) TO-CDs-B之FTIR圖譜。 46
圖2- 5 合成TO-CDs之優化條件。 47
在6.75 M H2SO4下,改變不同triolein濃度合成TO-CDs之 (a) 吸收光譜、(b) 螢光光譜和 (c) 量子產率 (QY)。在0.5 M triolein下,改變不同H2SO4濃度合成TO-CDs之 (d) 吸收光譜、(e) 螢光光譜和 (f) 量子產率 (QY)。 47
圖2- 6 不同濃度triolein (0.05–2.0 M)合成TO-CDs之TEM影像。 48
圖2- 7 TO-CDs之XPS圖譜。 49
圖2- 8 TO-CDs之光學性質 (a) UV-vis吸收光譜和 (b) 螢光光譜。 50
圖2- 9 不同濃度TO-CDs (a) 0.66、(b) 3.3、(c) 6.6、(d) 33 mg/mL之螢光光譜。 51
圖2- 10 不同濃度 (0.66、3.3、6.6、33 mg/mL) TO-CDs之UV-vis吸收光譜。 52
圖2- 11 TO-CDs-B檢測Cu2+離子之pH值選定。 53
圖2- 12 TO-CDs-B檢測Cu2+離子之選擇性。 54
圖2- 13 (a) TO-CDs-B、(b) TO-CDs-B + Cu2+之FTIR圖譜。 55
圖2- 14 TO-CDs-B檢測Cu2+離子之靈敏度。 56
圖2- 15 TO-CDs檢測銅葉綠素鈉 (SCC)之靈敏度。 57
 
表目錄
表2- 1 不同濃度TO-CDs之螢光半衰期。 58
表2- 2 TO-CDs在不同溶劑中之濃度依賴放光特性。 59
表2- 3 Cu2+離子對於TO-CDs-B與SCC對於TO-CDsa螢光半衰期之影響。 60
表2- 4不同碳點檢測Cu2+離子之線性範圍與偵測極限。 61
表2- 5 TO-CDs-B + Cu2+離子對於土壤樣品中干擾離子之容忍度。 62
表2- 6 利用TO-CDs-B檢測土壤樣品中的Cu2+離子。 63
表2- 7 利用TO-CDs檢測不含酒精之調味飲料中的銅葉綠素鈉 (SCC)。 64
表2- 8 利用ICP–MS檢測不含酒精之調味飲料中的銅葉綠素鈉 (SCC)。 65
dc.language.isozh-TW
dc.subject碳點zh_TW
dc.subject化學氧化zh_TW
dc.subject銅離子zh_TW
dc.subject濃度依賴性放光zh_TW
dc.subject銅葉綠素鈉zh_TW
dc.subjectchemical oxidationen
dc.subjectconcentration-dependent emissionen
dc.subjectcarbon dotsen
dc.subjectcopper ionsen
dc.subjectsodium copper chlorophyllinen
dc.title合成具濃度依賴性放光碳點及其應用於銅離子與銅葉綠素鈉的檢測
zh_TW
dc.titleSynthesis of carbon dots with concentration-dependent emission and their application for the detection of copper ions and sodium copper chlorophyllin
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃志清(Chih-Ching Huang),黃郁棻(Yu-Feng Huang),胡焯淳(Cho-Chun Hu)
dc.subject.keyword化學氧化,碳點,濃度依賴性放光,銅離子,銅葉綠素鈉,zh_TW
dc.subject.keywordchemical oxidation,carbon dots,concentration-dependent emission,copper ions,sodium copper chlorophyllin,en
dc.relation.page65
dc.identifier.doi10.6342/NTU202003133
dc.rights.note有償授權
dc.date.accepted2020-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-1208202017180400.pdf
  未授權公開取用
2.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved