請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49230
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林長平 | |
dc.contributor.author | Leng-Ya Lin | en |
dc.contributor.author | 林稜雅 | zh_TW |
dc.date.accessioned | 2021-06-15T11:20:08Z | - |
dc.date.available | 2021-09-08 | |
dc.date.copyright | 2016-09-08 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-18 | |
dc.identifier.citation | 1.Antoniw, J. F., and Pierpoint, W. S. 1978. Purification of a tobacco leaf protein associated with resistance to virus infection [proceedings]. Biochem. Soc. Trans. 6: 248-250.
2.Bai, X., Zhang, J., Ewing, A., Miller, S. A., Jancso Radek, A., Shevchenko, D. V., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J. W., and Hogenhout, S. A. 2006. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J. Bacteriol. 188: 3682-3696. 3.Baulcombe, D. C. 1999. Fast forward genetics based on virus-induced gene silencing. Curr. Opin. Plant Biol. 2: 109-113. 4.Bertaccini, A., Duduk, B., Paltrinieri, S., and Contaldo, N. 2014. Phytoplasmas and phytoplasma diseases: A severe threat to agriculture. Am. J. Plant Sci. 5: 1763-1788. 5.Bestwick, C. S., Brown, I. R., Bennett, M. H., and Mansfield, J. W. 1997. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell 9: 209-221. 6.Bulgari, D., Casati, P., Crepaldi, P., Daffonchio, D., Quaglino, F., Brusetti, L., and Bianco, P. A. 2011. Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. Appl. Environ. Microbiol. 77: 5018-5022. 7.Chaman, M. E., Copaja, S. V., and Argandona, V. H. 2003. Relationships between salicylic acid content, phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation. J. Agr. Food Chem. 51: 2227-2231. 8.Christensen, N. M., Axelsen, K. B., Nicolaisen, M., and Schulz, A. 2005. Phytoplasmas and their interactions with hosts. Trends Plant Sci. 10: 526-535. 9.Conrath, U. 2006. Systemic acquired resistance. Plant Signal. Behav. 1: 179-184. 10.Dong, X., Hong, Z., Chatterjee, J., Kim, S., and Verma, D. P. 2008. Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infection. Planta 229: 87-98. 11.Ellinger, D., and Voigt, C. A. 2014. Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann. Bot. 114: 1349-1358. 12.Fu, J., Liu, H., Li, Y., Yu, H., Li, X., Xiao, J., and Wang, S. 2011. Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol. 155:589-602. 13.Gonzalez-Lamothe, R., El Oirdi, M., Brisson, N., and Bouarab, K. 2012. The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development. Plant Cell 24: 762-777. 14.Hogenhout, S. A., Oshima, K., Ammar el, D., Kakizawa, S., Kingdom, H. N., and Namba, S. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9: 403-423. 15.Hren, M., Nikolic, P., Rotter, A., Blejec, A., Terrier, N., Ravnikar, M., Dermastia, M., and Gruden, K. 2009. 'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genet. 10: 460. 16.Landi, F., Pistelli, R., Abbatecola, A. M., Barillaro, C., Brandi, V., and Lattanzio, F. 2011. Common geriatric conditions and disabilities in older persons with chronic obstructive pulmonary disease. Curr. Opin. Pulm. Med. 17 Suppl 1: S29-34. 17.Lee, I. M., Davis, R. E., and Gundersen-Rindal, D. E. 2000. Phytoplasma: phytopathogenic mollicutes. Annu. Rev. Microbiol. 54: 221-255. 18.Maier, F., Zwicker, S., Huckelhoven, A., Meissner, M., Funk, J., Pfitzner, A. J., and Pfitzner, U. M. 2011. NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) and some NPR1-related proteins are sensitive to salicylic acid. Mol. Plant Pathol. 12: 73-91. 19.Musetti, R., di Toppi, L. S., Ermacora, P., and Favali, M. A. 2004. Recovery in apple trees infected with the apple proliferation phytoplasma: an ultrastructural and biochemical study. Phytopathology 94: 203-208. 20.Nishimura, M. T., Stein, M., Hou, B. H., Vogel, J. P., Edwards, H., and Somerville, S. C. 2003. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301: 969-972. 21.Patui, S., Bertolini, A., Clincon, L., Ermacora, P., Braidot, E., Vianello, A., and Zancani, M. 2013. Involvement of plasma membrane peroxidases and oxylipin pathway in the recovery from phytoplasma disease in apple (Malus domestica). Physiol. Plant. 148: 200-213. 22.Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671-675. 23.Sorin, C., Bussell, J. D., Camus, I., Ljung, K., Kowalczyk, M., Geiss, G., McKhann, H., Garcion, C., Vaucheret, H., Sandberg, G., and Bellini, C. 2005. Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17: 1343-1359. 24.Staswick, P. E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M. T., Maldonado, M. C., and Suza, W. 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17: 616-627. 25.Strawn, M. A., Marr, S. K., Inoue, K., Inada, N., Zubieta. C., and Wildermuth, M. C. 2007. Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J. Biol. Chem. 282: 5919-5933. 26.Su, Y. T., Chen, J. C., and Lin, C. P. 2011. Phytoplasma-induced floral abnormalities in Catharanthus roseus are associated with phytoplasma accumulation and transcript repression of floral organ identity genes. Mol. Plant-Microbe Interact. 24: 1502-1512. 27.Sung, Y. C., Lin, C. P., and Chen, J. C. 2014. Optimization of virus-induced gene silencing in Catharanthus roseus. Plant Pathol. 63: 1159–1167. 28.Tai, C. F., Lin, C. P., Sung, Y. C., and Chen, J. C. 2013. Auxin influences symptom expression and phytoplasmacolonisation in periwinkle infected with periwinkle leaf yellowing phytoplasma. Ann. Appl. Biol. 163: 420-429. 29.van Loon, L. C., and van Strien, E. A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55: 85-97. 30.van Tegelen, L. J., Moreno, P. R., Croes, A. F., Verpoorte, R., and Wullems, G. J. 1999. Purification and cDNA cloning of isochorismate synthase from elicited cell cultures of Catharanthus roseus. Plant Physiol. 119: 705-712. 31.Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahl-Goy, P., Metraux, J. P., and Ryals, J. A. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085-1094. 32.Weintraub, P. G., and Beanland, L. 2006. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 51: 91-111. 33.Wildermuth, M. C., Dewdney, J., Wu, G., and Ausubel, F. M. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562-565. 34.Yang, J., Tian, L., Sun, M. X., Huang, X. Y., Zhu, J., Guan, Y. F., Jia, Q. S., and Yang, Z. N. 2013. AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiol. 162: 720-731. 35.Yuan, H., Zhao, K., Lei, H., Shen, X., Liu, Y., Liao, X., and Li, T. 2013. Genome-wide analysis of the GH3 family in apple (Malus x domestica). BMC Genent. 14: 297. 36.Zhang, J., Hogenhout, S. A., Nault, L. R., Hoy, C. W., and Miller, S. A. 2004. Molecular and symptom analyses of phytoplasma strains from lettuce reveal a diverse population. Phytopathology 94: 842-849. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49230 | - |
dc.description.abstract | 植物菌質體 (phytoplasma) 為寄生於植物篩管內無細胞壁的絕對寄生性原核生物。主要透過媒介昆蟲進行傳播,可引起葉片黃化、簇葉、花器綠化等病徵,並在世界各地造成多種經濟作物的損失。從日日春 (Catharanthus roseus) 的研究中發現,植物抗植物菌質體的機制可能與系統獲得性抗病(systemic acquired resistance, SAR) 有關。先前的研究發現,當抑制可能參與系統獲得性抗病的CrNPR1的表現,不但使CrPR1a在罹病植株中的表現量下降,亦加速由植物菌質體造成的日日春葉片黃化病 (periwinkle leaf yellowing, PLY) 之病程發展。因此推測調控CrPR1a表現的轉錄因子,可能參與在植物對抗植物菌質體的抗病途徑,進而影響日日春葉片黃化病之病程發展。先前我們已利用病毒誘導基因靜默技術(virus-induced gene silencing, VIGS) 對307個轉錄因子進行篩選可能影響CrPR1a表現的轉錄因子。結果篩選出3個ARF,1個Aux/IAA,以及1個bZIP類別之轉錄因子。因此,本研究將進一步探討以VIGS靜默這些轉錄因子的表現是否會對日日春葉片黃化病的病徵發展造成影響。在初步的兩次試驗中發現靜默與阿拉伯芥ARF17接近的ARF轉錄因子CrARF17 能降低CrPR1a 的表現量並也造成日日春葉片黃化病之病程發展加速。此結果與先前發現靜默CrARF17抑制CrPR1a表現的結果一致。由於在阿拉伯芥的研究中發現ARF一類的轉錄因子多參與在植物生長素的訊息傳遞上以及調控GH3和CalS基因群的表現,而植物生長素可能透過壓抑植物中水楊酸 (salicylic acid, SA) 的累積進而影響植物對病原菌的抗性。本研究證實當CrARF17靜默後會增加GH3基因表現和壓抑SA, IAA及IAA-Asp的累積。而GH3和大多的CalS基因在植株受到PLY感染後皆會被誘導表現。目前推測CrARF17參與植物的抗病反應,但並沒有直接參與在抗PLY的抗病路徑當中。往後我們將針對GH3和CalS基因在植物對日日春葉片黃化病的抗性上可能扮演的角色作更深入的探討。並進一步驗證callose的累積和IAA-Asp的含量對病程發展的影響。 | zh_TW |
dc.description.abstract | Phytoplasmas are wall-less prokaryotic obligate plant pathogens that are restricted in phloem. These insect-transmittable pathogens cause symptoms including yellows, witches’-broom, virescence, and lead to worldwide economic losses. In periwinkle (Catharanthus roseus), plants may fight against phytoplasmas through systemic acquired resistance (SAR). Previously, we found suppression of CrNPR1, which may play a central role in SAR, result in reduction of CrPR1a induction and acceleration of symptom progression of periwinkle leaf yellowing (PLY), a disease caused by phytoplasma infection. Thus, we hypothesized that transcription factors that can affect the expression of CrPR1a may be involved in plant defense against PLY phytoplasmas and affect symptom progression. Previously, we have screened 307 transcription factors through virus-induced gene silencing (VIGS) and identified factors that regulate CrPR1a expression. These factors include three ARFs, one Aux/IAA, and one bZIP family members. In this proposed study, we aimed to understand whether these transcription factors are direct or indirectly involved in plant defense against PLY phytoplasma. In two preliminary tests, silencing of an Arabidopsis ARF17 ortholog, CrARF17, not only reduced the expression of CrPR1a, but also accelerated disease progression of PLY. The result is consistent with previous finding that silencing of CrARF17 resulted in repression of CrPR1a induction. Studies in Arabidopsis have shown that ARFs participate in auxin signaling and auxin can affect plant resistance through repressing of salicylic acid (SA) biosynthesis. In this study, we have clarified that silencing of CrARF17 resulted in increase of GH3 gene expression and repression of SA, IAA and IAA-Asp accumulation. Then, GH3 and most of CalS genes are induced in plants after PLY infection. We speculate that CrARF17 participates in plant resistance indirectly against PLY phytoplasmas. In the future, we will focus on clarifying the role of GH3 and CalS genes in plant resistance to PLY, and further clarify the effect of callose accumulation and the IAA-Asp level on symptom progression of PLY. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:20:08Z (GMT). No. of bitstreams: 1 ntu-105-R03633020-1.pdf: 2351818 bytes, checksum: b7111a187d3b307361a9d7415a14b5df (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口委員會審定書………………………………..……………………………………...................i
誌謝 …………………………………………………………………....................………………..ii 摘要 ………………………………………………………………….....................…………….iii Abstract ………………………………………………………...................……………………….v Abbreviations …………………………………………................……………………………vii Contents …………………………………………………………….................……………….viii Introduction ……………………………………………………………...............……………...1 Materials and Methods ………………………………………...........………………….…….6 Plant materials and Growth condition ……………………………….……………..6 Agrobacterium-mediated virus-induced gene silencing…..………6 RNA extraction and cDNA synthesis …………………………..….………….……..7 Genomic DNA extraction ……………………………………...…….......………..…….8 Real-time PCR …………………………………………………..…….………..............……9 PLY phytoplasma inoculation …………………………………..……......…………….9 Phytoplasma quantification…………………………………..…….......…………….10 Phytohormone measurement …………………………………………...........…………11 Results ………………………………………………………………………………....................12 Silencing of CrARF17 results in accelerated symptom progression of periwinkle leaf yellowing ………………………………………….12 Accelerated symptom progression of periwinkle leaf yellowing (PLY) in CrARF17-silenced plants is associated with accumulation of PLY phytoplasma.....……………………………………………13 Silencing of CrARF17 affects expression of genes encoding isichorismate synthase(ICS) in Catharanthus roseus …….…………15 TRV::ARF17 and PLY-infected plants induce the expression of GH3.1 and GH3.6.............................……………………………16 Both silencing of CrARF17 and PLY infection affect expression of callose synthase(CalS) genes ………………………………………16 Silencing of CrARF17 and PLY infection affect differently on Salicylic acid (SA),indole-3-acetic acid (IAA) and IAA-Asp contents in periwinkle plants…………………………………………………………..…18 Discussion ………………………………………………………………………...................…19 References …………………………………..……………………………………….................23 Table and Figures …………………………………………………………………...............30 Supplementary Figures …………………………………………………………............……50 | |
dc.language.iso | en | |
dc.title | 日日春ARF17於植物抵抗日日春葉片黃化病植物菌質體所扮演之角色 | zh_TW |
dc.title | Potential mechanisms of CrARF17 on plant defense against periwinkle leaf yellowing phytoplasma | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳仁治 | |
dc.contributor.oralexamcommittee | 張碧芳,林乃君,鍾嘉綾 | |
dc.subject.keyword | 病毒誘導基因靜默,系統性抗病,日日春葉片黃化病植物菌質體,CrPR1a,轉錄因子, | zh_TW |
dc.subject.keyword | virus-induced gene silencing,systemic acquired resistance,periwinkle leaf yellowing phytoplasma,CrPR1a,transcription factor, | en |
dc.relation.page | 54 | |
dc.identifier.doi | 10.6342/NTU201603136 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。