請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49225
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李玲玲 | |
dc.contributor.author | Jen-Hui Pai | en |
dc.contributor.author | 白任暉 | zh_TW |
dc.date.accessioned | 2021-06-15T11:19:57Z | - |
dc.date.available | 2017-08-25 | |
dc.date.copyright | 2016-08-25 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-18 | |
dc.identifier.citation | Alton, L. A., & Franklin, C. E. (2012). Do high temperatures enhance the negative effects of ultraviolet-B radiation in embryonic and larval amphibians? Biology open, 1(9), 897-903.
Alton, L. A., Wilson, R. S., & Franklin, C. E. (2011). A small increase in UV-B increases the susceptibility of tadpoles to predation. Proceedings of the Royal Society B: Biological Sciences, 278(1718), 2575-2583. Ankley, G.T., Degitz, S.J., Diamond, S.A., & Tietge, J.E. (2004). Assessment of environmental stressors potentially responsible for malformations, in North American anuran amphibians. Ecotoxicology and Environmental Safety, 58(1), 7-16 Bancroft, B. A., Baker, N. J., & Blaustein, A. R. (2008). A meta‐analysis of the effects of ultraviolet B radiation and its synergistic interactions with pH, contaminants, and disease on amphibian survival. Conservation Biology, 22(4), 987-996. Bancroft, B.A., Baker, N.J., Searle, C.L., Garcia, T.S., & Blaustein, A.R. (2008b). Larval amphibians seek warm temperatures and do not avoid harmful UVB radiation. Behavioral Ecology, 19(4), 879-886. Blaustein, A. R., & Belden, L. K. (2003). Amphibian defenses against ultraviolet‐B radiation. Evolution & development, 5(1), 89-97. Blaustein, A. R., Belden, L. K., Olson, D. H., Green, D. M., Root, T. L., & Kiesecker, J. M. (2001). Amphibian breeding and climate change. Conservation Biology, 15(6), 1804-1809. Blaustein, A. R., Hoffman, P. D., Hokit, G. D., Kiesecker, J. M., Walls, S. C., & Hays, J. B. (1994). UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines? Proceedings of the National Academy of Sciences, 91(5), 1791-1795. Blaustein, A. R., Kiesecker, J. M., Chivers, D. P., & Anthony, R. G. (1997). Ambient UV-B radiation causes deformities in amphibian embryos. Proceedings of the National Academy of Sciences, 94(25), 13735. Blaustein, A. R., Kiesecker, J. M., Chivers, D. P., Hokit, G. D., Marco, A., Belden, L. K., & Hatch, A. (1998). Effects of ultraviolet radiation on amphibians: field experiments. American Zoologist, 38(6), 799-812. Blaustein, A. R., Walls, S. C., Bancroft, B. A., Lawler, J. J., Searle, C. L., & Gervasi, S. S. (2010). Direct and indirect effects of climate change on amphibian populations. Diversity, 2(2), 281-313. Bradford, David F. (1990). Incubation time and rate of embryonic development in amphibians: the influence of ovum size, temperature, and reproductive mode. Physiological Zoology, 63(6), 1157-1180 Buchholz, D. R., & Hayes, T. B. (2000). Larval period comparison for the spadefoot toads Scaphiopus couchii and Spea multiplicata (Pelobatidae: Anura). Herpetologica, 56(4), 455-468. Buskirk, J.V., & McCollum, A,S, (2000). Influence of tail shape on tadpole swimming performance. Journal of Experimental Biology, 203, 2149-2158 Calfee, R.D., Little E.E., Pearl, C.A., & Hoffman, R.L. (2010). Effects of simulated solar UVB radiation on early developmental stages of the northwestern salamander (Ambystoma gracile) from Three Lakes. Journal of Herpetology, 44(4), 572-580. Chatzinikolaou, G., Karakasilioti, I., & Garinis, G.A. (2014). DNA damage and innate immunity: links and trade-offs. Trends in Immunology, 35(9), 429-435. Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G., Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver & Wehner, M. (2013). Long-term climate change: projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Croteau, M.C., Martyniuk, C.J., Trudeau, V.L. & Lean, D.R.S. (2008). Chronic exposure of Rana pipiens tadpoles to UVB radiation and the estrogenic chemical 4-tert-octylphenol. Journal of Toxicology and Environmental Health. 71(2), 134-144. Dayton, G.H., Saenz, D., Baum, K. A., Langerhans, B. R., & DeWitt, T. J. (2005). Body shape, burst speed and escape behavior of larval anurans. Oikos, 111(3), 582-591. Duarte, H., Tejedo, M., Katzenberger, M., Marangoni, F., Baldo, D., Beltran, F., Marti, D.A., Richter-Boix, A., & Gonzalez-Voyer, A. (2012). Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Global Change Biology, 18(2), 412-421. Galloy, V., & Denoël, M. (2010). Detrimental effect of temperature increase on the fitness of an amphibian (Lissotriton helveticus). Acta Oecologica, 36(2), 179-183. Garcia, T. S., Paoletti, D. J., & Blaustein, A. R. (2009). Correlated trait response: comparing amphibian defense strategies across a stress gradient. Canadian Journal of Zoology, 87(1), 41-49. Gosner, K. L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16(3), 183-190. Herman, J. R., Bhartia, P.K., Ziemke, J., Ahmad, Z., & Larko, D. (1996). UV‐B increases (1979–1992) from decreases in total ozone. Geophysical Research Letters, 23(16), 2117-2120. Hsu, H-H., Chia C., Wu Y-C., Lu M-M., Chen, C-T., & Chen, Y-M. (2011). Climate change in Taiwan: Scientific report 2011 (summary). National Science Council, Taipei, Taiwan, ROC, 67pp. Huang, W-S., Cheng, Y-S., Tu, H-Y. (2004). Reproductive patterns of two sympatric Ranid frogs, Rana latouchii and R. Sauteri, with comments on anuran breeding seasons in Taiwan. Collection and Research, 17, 1-10. Kats, L. B., Kiesecker, J. M., Chivers, D. P., & Blaustein, A. R. (2000). Effects of UV‐B radiation on anti‐predator behavior in three species of amphibians. Ethology, 106(10), 921-931. Kerr, J. B., & McElroy, C. T. (1993). Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science, 262(5136), 1032-1032. Kiesecker, J. M., Blaustein, A. R., & Belden, L. K. (2001). Complex causes of amphibian population declines. Nature, 410(6829), 681-684. Liu, Chung-Ming. (2000). Surface erythemally-weighted UVB flux in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 11(4), 879-894. McKenzie, R. L., Aucamp, P. J., Bais, A. F., Björn, L. O., Ilyas, M., & Madronich, S. (2011). Ozone depletion and climate change: impacts on UV radiation. Photochemical & Photobiological Sciences, 10(2), 182-198. Michael, M. J., & Burke, S. (2011). Consequences of an amphibian malformity for development and fitness in complex environments. Freshwater Biology, 56(7), 1417-1425. Middleton, E. M., Herman, J. R., Celarier, E. A., Wilkinson, J. W., Carey, C., & Rusin, R. J. (2001). Evaluating ultraviolet radiation exposure with satellite data at sites of amphibian declines in Central and South America. Conservation Biology, 15(4), 914-929. Mitchell, T., Alton, L. A., White, C. R., & Franklin, C. E. (2012). Relations between conspecific density and effects of ultraviolet‐B radiation on tadpole size in the Striped Marsh Frog. Conservation Biology, 26(6), 1112-1120. Moore, John A. (1939). Temperature tolerance and rates of development in the eggs of amphibia. Ecology, 20(4), 459-478. Pahkala, M., Laurila, A., & Merilä, J. (2002). Effects of ultraviolet-B radiation on common frog Rana temporaria embryos from along a latitudinal gradient. Oecologia, 133(4), 458-465. Pahkala, M., Laurila, A., & Merilä, J. (2003). Effects of ultraviolet-B radiation on behaviour and growth of three species of amphibian larvae. Chemosphere, 51(3), 197-204. Pounds, A. J., & Crump, M. L. (1994). Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog. Conservation Biology, 8(1), 72-85. Reeves, M. K., Jensen, P., Dolph, C. L., Holyoak, M., & Trust, K. A. (2010). Multiple stressors and the cause of amphibian abnormalities. Ecological Monographs, 80(3), 423-440. Romansic, J.M., Waggener, A. A., Bancroft, B. A., & Blaustein, A. R. (2009). Influence of ultraviolet-B radiation on growth, prevalence of deformities, and susceptibility to predation in Cascades frog (Rana cascadae) larvae. Hydrobiologia, 624(1), 219-233. Schuch, A.P., Beux dos Santos, M., Lipinski, V.M., Peres, L.V., Peripolli dos Santos, C., Cechin, S.Z., Schuch, N.J., Pinheiro, D.K., & Loreto, E.L. (2015). Identification of influential events concerning the Antarctic ozone hole over Southern Brazil and the biological effects induced by UVB and UVA radiation in an endemic Treefrog species. Ecotoxicology and Environmental Safety, 118, 190-198. Searle, C. L., Belden, L. K., Bancroft, B. A., Han, B. A., Biga, L. M., & Blaustein, A. R. (2010). Experimental examination of the effects of ultraviolet-B radiation in combination with other stressors on frog larvae. Oecologia, 162(1), 237-245. Stenseth, N. C., Mysterud, A., Ottersen, G., Hurrell, J. W., Chan, K-S., & Lima, M. (2002). Ecological effects of climate fluctuations. Science, 297(5585), 1292-1296. Terrell, K.A., Quintero, R.P., Murray, S., Kleopfer, J.D., Murphy, J.B., Evans, M.J., Nissen, B.D., & Gratwicke, B. (2013). Cryptic impacts of temperature variability on amphibian immune function. Journal of Experimental Biology, 216, 4204-4211. Uitregt, V., Vincent, O., Wilson, R. S., & Franklin, C. E. (2007). Cooler temperatures increase sensitivity to ultraviolet B radiation in embryos and larvae of the frog Limnodynastes peronii. Global Change Biology, 13(6), 1114-1121. Xiang, G.S., Li, P.X., & Yang, Y.R. (2009). Amphibians and reptiles illustrations in Taiwan. (in Chinese) Taipei: Owl Publishing House Co., Ltd. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49225 | - |
dc.description.abstract | 兩生類為可利用水域及陸域環境的外溫動物,對於棲息環境之變化極為敏感,近年研究已普遍顯示全球氣候變遷與兩生類之族群下降有密切關聯。過往針對溫度或UV-B分別如何影響兩生類之發育、形態及行為表現已有諸多研究,然而溫度和UV-B之間的交互作用卻較少被探討。本研究旨在探討全球暖化之下,溫度與UV-B的交互作用如何影響蝌蚪的發育與形態,並進一步了解其如何間接影響蝌蚪的避敵行為。實驗方法為自野外採集拉都希氏赤蛙 (Hylarana latouchii) 的卵團,隨機分成 4個實驗組(包含高低程度的溫度與UV-B),記錄與分析蝌蚪從卵(G9)至Gosner 32 (G32)時期的發育與形態變化,並亦記錄與分析已成功發育到G32蝌蚪的游泳起速,以進行避敵行為測試。結果顯示高UV-B處理皆對蝌蚪大部份的特徵有顯著負面影響,包含增加死亡率及形態異常、減少壽命及蝌蚪整體大小 (包含全長、體長、體寬及尾肌寬) ,原因可能為長時間UV-B輻射造成DNA的累積損害;而高溫處理則只有顯著減少蝌蚪壽命與增加蝌蚪的尾肌寬。蝌蚪壽命的減少顯示輕微的溫度上升也可能對蝌蚪有直接的負面影響。另外,本研究亦發現溫度與UV-B之間具有交互作用,如高溫可調解高UV-B對蝌蚪成長的負面效果;而蝌蚪形態異常和損壞會間接降低游泳起速,這可能導致其被掠食者捕食的機率上升,也可能間接降低蝌蚪覓食效率。本研究發現在氣候暖化之下,UV-B輻射(相較於溫度)對兩生類的負面影響將更為顯著,而溫度在動物可耐受的範圍內逐步增加則可能有助於調解UV-B所造成形態上的損害。 | zh_TW |
dc.description.abstract | Amphibians are ectotherms that reside in both aquatic and terrestrial systems which make them extremely sensitive to changes in their environment, and past research has shown that global climate change has contributed substantially to the recent global amphibian decline. Although there are plentiful research on the effects of temperature or UV-B radiation on amphibian development, morphology, and behaviour, respectively, there has been very little research on the interaction of high temperature and UV-B on amphibians. The aim of this study is to determine the interaction effects of high temperature and UV-B, under a global warming scenario, on tadpole development and morphology, as well as to determine how these effects would impact the predator avoidance behaviour of tadpoles. I examined the independent and interaction effects of temperature and UV-B on various developmental and morphological traits of the LaTouche's frog (Hylarana latouchii) by randomly distributing the egg masses into 4 different treatment groups in a 2 x 2 factorial combination of high and low temperature and UV-B. The developmental and morphological traits of the embryos/tadpoles were recorded and analyzed from Gosner stage 9 (G9) to Gosner stage 32 (G32). I also examined the predator avoidance response of tadpoles that have successfully reached G32 by measuring burst swimming speed. The results indicated that high UV-B had negatively affected the majority of tadpole traits including increased mortality and abnormalities, decreased longevity, and decreased tadpole overall size and width (including total length, body length, body width, and tail muscle width). This may be due to the DNA damage accumulated due to prolonged UV-B exposure. High temperature, on the other hand, had only decrease longevity and increased tail muscle width of tadpoles. The decrease in longevity revealed that slight increase in temperature may have a direct negative effect on tadpole development. Moreover, there was an interaction effect of temperature and UV-B. In this study, high temperature was ameliorating the negative effects that UV-B was exerting on tadpole. Also, morphological abnormality and damage did seem to carry over and significantly decreased burst swimming performance of tadpoles which may lead to increase in predation and decrease foraging capabilities. This study shows that under a global warming scenario, UV-B radiation is a much higher stressor to amphibian species than temperature and an incremental increase in temperature, within the species’ thermal range, may help ameliorate the morphological damages caused by UV-B. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:19:57Z (GMT). No. of bitstreams: 1 ntu-105-R01b44023-1.pdf: 1276531 bytes, checksum: cf15e46c0d47826688208cde268eb825 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Chinese Abstract - I
English Abstract - II Introduction - 1 Materials and Methods - 3 Study Species - 3 Animal Collection and Maintenance - 4 Experimental Treatment - 4 Impact of UV-B and Temperature on Development and Morphology - 5 Impact of UV-B and Temperature on Predator Avoidance Response - 6 Statistical Analysis - 6 Results - 7 Impact of Increased UV-B and Temperature on Development and Morphology - 7 Impact of Increased UV-B and Temperature on Burst Swimming Speed - 9 Discussion - 10 Embryonic and Tadpole Development - 10 Tadpole Morphology and Burst Swimming Speed - 12 Conclusion - 15 Literature Cited - 16 | |
dc.language.iso | en | |
dc.title | 溫度與UV-B交感效應對蝌蚪發育、形態與避敵行為的影響 | zh_TW |
dc.title | The Interaction of High Temperature and UV-B Radiation on Tadpole Development, Morphology and Predator Avoidance Behaviour | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉力瑜,關永才,陳德豪,巫奇勳 | |
dc.subject.keyword | 拉都希氏赤蛙,蝌蚪發育,避敵行為,溫度與UV-B交互作用,蝌蚪的游泳起速, | zh_TW |
dc.subject.keyword | Hylarana latouchii,tadpole development,predator avoidance behavior,interaction effect of temperature and UV-B radiation,tadpole burst swimming speed, | en |
dc.relation.page | 36 | |
dc.identifier.doi | 10.6342/NTU201602904 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-19 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
顯示於系所單位: | 生態學與演化生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 1.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。