Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49187
標題: 應用深度神經網路進行基於短縱列重複序列的DNA混合物解譯
Applying Deep Neural Network for STR-based DNA Mixture Interpretation
作者: Chia-Yu Hu
胡嘉祐
指導教授: 周承復(Cheng-Fu Chou)
關鍵字: 機器學習,神經網路,短縱列重複序列,DNA混合物,
machine learning,neural network,Short tandem repeat(STR),DNA mixture,
出版年 : 2020
學位: 碩士
摘要: 短縱列重複序列 (short tandem repeat; STR) 被廣泛用於法醫學應用。EuroforMix仍然被廣泛使用來判定DNA混合物中判定其單人檢體,但在混和物中有親緣關係和裂解的混和物中,EuroforMix表現較差。
本論文的目的是探索深度神經網路 (deep neural networks) 可以幫助解決判定此類問題。為此,我們提出了基於深度神經網路的模型。如結果所示,深度神經網路在裂解及親屬混和物上可以比EuroforMix提升約29\%的準確度,整體提升約5\%的準確度。儘管裂解的檢體以及具血緣關係個體的DNA混合物在解譯上仍然具有挑戰性,但神經網路具有更高的DNA混合物解譯準確度。基於該結果,我們得出結論:有了深度神經網路,DNA混合物不必僅使用現有的軟體進行判定。
Short tandem repeat (STR) is widely used in forensic applications. EuroforMix is still widely used to determine the single DNA in the DNA mixture,However, in mixtures with related and degraded, EuroforMix performs poorly.
The purpose of this paper is to explore how deep neural networks can help resolve such problems. To this end, we have proposed a model based on deep neural networks. As shown by the results, the deep neural network can provide about 29\% more accuracy than EuroforMix in degraded related mixtures, and about 5\% more accuracy overall. Although the degraded samples and DNA mixtures of related individuals are still challenging to interpret, neural networks have higher accuracy of DNA mixture interpretation. Based on this result, we conclude that with deep neural networks, DNA mixtures do not have to be judged using only existing software.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49187
DOI: 10.6342/NTU202003142
全文授權: 有償授權
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-1208202018435500.pdf
  未授權公開取用
5 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved