請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49166
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉貴生 | |
dc.contributor.author | De-Cheng Huang | en |
dc.contributor.author | 黃德成 | zh_TW |
dc.date.accessioned | 2021-06-15T11:18:00Z | - |
dc.date.available | 2018-10-05 | |
dc.date.copyright | 2016-10-05 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-20 | |
dc.identifier.citation | CHAPTER 1
1. Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and Electrochromic Devices; Cambridge University Press: Cambridge, UK, 2007. 2. Chang, I. F. Electrooptical Displays, 1976, 155. 3. Faughnan, B. W.; Crandall, R. S. Display Devices, 1980, 5, 181. 4. Byker, H. Proc. Electrochem. Soc. 1994, 3, 94. 5. Granqvist, G. C. Handbook of Inorganic Electrochromic Materials, 1995. 6. Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Displays 2006, 27, 2. 7. Green, M. Chem. Ind. 1996, 641. 8. Mortimer, R. J. Chem. Soc. Rev. 1997, 26, 147. 9. Mortimer, R. J. Electrochim. Acta. 1999, 44, 2971. 10. Rosseinsky, D. R.; Mortimer, R. J. Adv. Mater. 2001, 13, 783. 11. Platt, J. R. J. Chem. Phys. 1961, 34, 862 12. Deb, S. K. Philos. Mag. 1973, 27, 801. 13. Sindhu, S.; Narasimha Rao, K.; Ahuja, S.; Kumar, A.; Gopal, E. S. R. Materials Science and Engineering: B 2006, 132, 39. 14. Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism: Fundamentals and Applications; VCH, Weinheim, Germany, 1995. 15. Kubo, T.; Tanimoto, J.; Minami, M.; Toya, T.; Nishikitani, Y.; Watanabe, H. Solid State Ionics 2003, 165, 97. 16. Dautremont-Smith, W. C. Displays 1982, 3, 3. 17. de Tacconi, N. R.; Rajeshwar, K.; Lezna, R. O. Chem. Mater. 2003, 15, 3046. 18. Bange, K.; Bambke, T. Adv. Mater. 1990, 2, 10. 19. Kobosew, N.; Nekrassow, N.I.Z. Electrochem. 1930, 36, 529. 20. Deb, S. K. Appl. Optics, suppl. 1969, 3, 192. 21. Granqvist, G. V. Phys. Thin Films, 1993, 17, 301. 22. Tesfamichael, T.; Arita, M.; Bostrom, T. and Bell, J. Thin Solid Films, 2010, 518, 4791. 23. Gillaspie, D. T.; Tenent, R. C. and Dillon, A. C. J. Mater. Chem. 2010, 20, 9585. 24. Rosseinsky, D. R. and Mortimer, R. J. Adv. Mater. 2001, 13, 783. 25. Faughnan, B. W. and Crandall, R. S. Top. Appl. Phys. 1980, 40, 181. 26. Lee, S.-H.; Seong, M. J.; Cheong, H. M.; Ozkan, E.; Tracy, E. C. and Deb, S. K. Solid State Ionics, 2003, 156, 447. 27. Schirmer, O. F. and Salje, E. Solid State Commun. 1980, 33, 333. 28. Zhang, J.-G.; Benson, D. K.; Tracy, C. E.; Deb, S. K. and Czanderna, A. W. J. Electrochem. Soc. 1997, 144, 2022. 29. Deb, S. K. Sol. Energy Mater. Sol. Cells, 2008, 92, 245. 30. Broclawik, E.; Go’ra, A.; Liguzinski, P.; Petelenz, P. and Witekb, H. A. J. Chem. Phys. 2006, 124, 054709. 31. Faughnan, B. W.; Crandall, R. S. and Lampert, M. A. Appl. Phys. Lett. 1975, 27, 275. 32. Mclntyre, J. D. E.; Peck Jr. W. F. and Nakahara, S. J. Electrochem. Soc. 1980, 6, 1264. 33. Jung, Y.; Lee, J. Y.; Taka, Y. Electrochem. Solid-State Lett. 2004, 7, H5. 34. (a) Gottesfeld, S.; McIntyre J. D. E.; Beni, G.; Shay, J. L. Appl. Phys. Lett. 1978, 33, 208. (b) Gottesfeld, S.; McIntyre, J. D. E. J. Electrochem. Soc. 1979, 126, 742. 35. Monk, P. M. S.; Man, C. M. J. Mater. Sci. 1999, 10, 101. 36. Main, F. am; Gesellschaft, D. C. Gmelin, Handbuch der Anorganischen Chemie 1930, 59, 671. 37. Neff, V. D. J. Electrochem. Soc. 1978, 125, 886. 38. Itaya, K.; Uchida I.; Neff, V. D. Acc. Chem. Res. 1986, 19, 162. 39. Tacconi, N. R.; Rajeshwar, K.; Lezna, R. O. Chem. Mater. 2003, 15, 3046. 40. A. Braun, J. Tcherniac. Uber die Produkte der Einwirkung von Acetanhydrid auf Phthalamid. Berichte der deutschen chemischen Gesellschaft. 1907, 40 (2): 2709. 41. Leznoff, C. C. and Lever, A. B. P. (Eds.), Phthalocyanines: Properties and Applications 1, J. Wiley & Sons, New York, 1989 Vol. 2 (1993); Vol. 3 (1993); Vol. 4 (1996). 42. Collins, G. C. S.; Schiffrin, D. J. J. Electrochem. Soc. 1985, 132, 1835. 43. Shirakawa, H.; MacDiarmid, A. G.; Heeger, A. J. Chem. Commun. 2003, 1, 4. 44. Prakash R.; Somani, S. R. Mater. Chem. Phys. 2002, 77, 117. 45. Mastragostino, M. Applications of Electroactive Polymers; Chapman and Hall, London, 1993. 46. (a) Oishi, Y; Ishida, M.; Kakimoto, M. A.; Imai, Y.; Kurosaki, T. J. Polym. Sci., Part A: Polym. Chem. 1992, 30, 1027. (b) Liou, G. S.; Hsiao, S. H.; Ishida, M.; Kakimoto, M. A.; Imai, Y. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3815. (c) Leung, M. K.; Chou, M. Y.; Su, Y. O.; Chiang, C. L.; Chen, H. L.; Yang, C. F.; Yang, C. C.; Lin, C. C.; Chen, H. T. Org. Lett. 2003, 5, 839. 47. (a) Ogino, K.; Kanagae, A.; Yamaguchi, R.; Sato, H.; Kurtaja, J. Macromol. Rapid Commun. 1999, 20, 103. (b) Yu, W.-L.; Pei, J.; Huang, W.; Heeger, A. J. Chem. Commun. 2000, 8, 681. (c) Chou, M.-Y.; Leung, M.-K.; Su, Y. O.; Chiang, S. L.; Lin, C.-C.; Liu, J.-H.; Kuo, C.-K.; Mou, C.-Y. Chem. Mater. 2001, 16, 654. (d) Su, T.-H.; Hsiao, S.-H.; Liou, G.-S. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 2085. (e) Liou, G.-S.; Hsiao, S.-H.; Su, T.-H. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 3245. (f) Cheng, S.-H.; Hsiao, S.-H.; Su, T.-H.; Liou, G.-S. Macromolecules 2005, 38, 307. 48. (a) Chou, M. Y.; Leung, M. K.; Su, Y. O.; Chiang, C. L.; Lin, C. C.; Liu, J. H.; Kuo, C. K.; Mou, C. Y. Chem. Mater. 2004, 16, 654. (b) Otero, L.; Sereno, L.; Fungo, F.; Liao, Y. L.; Lin, C. Y.; Wong, K. T. Chem. Mater. 2006, 18, 3495. (c) Natera, J.; Otero, L.; Sereno, L.; Fungo, F.; Wang, N. S.; Tsai, Y. M.; Hwu, T. Y.; Wong, K. T. Macromolecules 2007, 40, 4456. (d) Natera, J.; Otero, L.; D’Eramo, F.; Sereno, L.; Fungo, F.; Wang, N. S.; Tsai, Y. M.; Wong, K. T. Macromolecules 2009, 42, 626. (e) Yang, C. H.; Liu, F. J.; Huang, L. R.; Wang, T. L.; Lin, W. C.; Sato, M.; Chen, C. H.; Chang, C. C. J. Electroanal. Chem. 2008, 617, 101. (f) Koyuncu, F. B.; Koyuncu, S.; Ozdemir, E. Electrochim. Acta 2010, 55, 4935. (g) Ramirez, C. L.; Parise, A. R. Org. Electron. 2009, 10, 747. (h) Koyuncu, S.; Gultekin, B.; Zafer, C.; Bilgili, H.; Can, M.; Demic, S.; Kaya, I.; Icli, S. Electrochim. Acta 2009, 54, 5694. 49. Beaupre’, S.; Dumas, J.; Leclerc, M. Chem. Mater. 2006, 18, 4011. 50. (a) Liou, G. S.; Hsiao, S. H.; Ishida, M.; Kakimoto, M. and Imai, Y. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 2810; (b) Liou, G. S. and Hsiao, S. H. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 94; (c) Hsiao, S. H.; Chen, C. W. and Liou, G. S. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 3302. 51. (a) Cheng, S. H.; Hsiao, S. H.; Su, T. H.; Liou, G. S. Macromolecules 2005, 38, 307; (b) Su, T. H.; Hsiao, S. H.; Liou, G. S. J Polym Sci Part A: Polym Chem. 2005, 43, 2085. 52. (a) Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W. and Adams, R. N. J. Am. Chem. Soc. 1966, 88, 3498; (b) Nelson, R. F. and Adams, R. N. J. Am. Chem. Soc. 1968, 90, 3925. 53. (a) Liou, G. S.; Hsiao, S. H.; Su, T. H. J. Mater. Chem. 2005, 15, 1812. (b) Liou, G. S.; Hsiao, S. H.; Huang, N. K.; Yang, Y. L. Macromolecules 2006, 39, 5337. (c) Chang, C. W.; Liou, G. S.; J. Mater. Chem. 2008, 18, 5638. (d) Chang, C. W.; Chung, C. H.; Liou, G. S. Macromolecules 2008, 41, 8441. (e) Liou, G. S.; Lin, H. Y.; Yen, H. J. J. Mater. Chem. 2009, 19, 7666. (f) Liou, G. S.; Lin, H. Y. Macromolecules 2009, 42, 125. 54. Yen, H. J. and Liou, G. S. Polym. Chem. 2012, 3, 255 55. (a) Chang, C. W.; Liou, G. S. and Hsiao, S. H. J. Mater. Chem. 2007, 17, 1007 (b) Yen, H. J. and Liou, G. S. Chem. Mater. 2009, 21, 4062; (c) Liou, G. S. and Lin, H. Y. Macromolecules 2009, 42, 125; (d) Yen, H. J.; Lin, H. J. and Liou, G. S. Chem. Mater. 2011, 23, 1874. 56. Yen, H. J.; Lin, K. Y. and Liou, G. S. J. Mater. Chem. 2011, 21, 6230. 57. Weidel, H.; Russo M. Monatshefte 1882, 3, 850. 58. Edward, L. Clennan Coordin. Chem. Rev. 2004, 248, 477. 59. Summers, L.A. Adv. Hetero. Chem. 1984, 35, 281. 60. Bard, A.J.; Ledwith, A.; Shine, H.J. Adv. Phys. Org. Chem. 1976, 13, 155 61. Michaelis L , Hill E S. J . Gen. Physiol. , 1933 , 16 : 859. 62. Monk, P. M. S “The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4’-Bipyridine” 1998. 63. 林巧芬 “以紫精搭配普魯士藍電致色變元件之研究” 臺灣大學, 2003 64. Schoot, C. J.; Ponjee, J. J.; van Dam, H.T.; van Doorn, R. A.; Bolwijn, P. T. Appl. Phys. Lett. 1973, 23, 64. 65. Yasuda, A.; Mori, H. Y.; Takehana, A.; Ohkoshi,; Kamiya, N. J. Appl. Electrochem. 1984, 14, 323. 66. Byker, H. J. U.S. Patent, No. 4, 1990, 902,108. 67. Barna, Gabriel G. and Fish, John G. J. Electrochem. Soc. 1981, 128, 1290-1292 68. Leventis, N.; Chung, Y. C. Chem. Mater. 1992, 4, 141. 69. Nishikitani, Y.; Kobayashi, M. S.; Uchida; Kubo, T. Electrochim. Acta 2001, 46, 2035. 70. Cummins, D. G.; Boschloo; Ryan, M.; Corr, D.; Rao,S. N.; Fitzmaurice, D. J. Phys. Chem. B 2000, 104, 129 11449. 71. Cinnsealach, R.; Boschloo, G.; Rao, S. N.; Fitzmaurice, D. Sol. Energy Mater. Sol. Cells 1999, 57, 107. 72. Shelepin, I. V.; Ushakov, O. A.; Karpova, N. I.; Barachevskii, V. A. Elektrokhimiya 1977, 13, 32. 73. Leventis, N.; Chen, M; Liapis,A. I.; Johnson, J. W.; Jain, A. J. Electrochem. Soc. 1998, 145, L55. 74. Calvert, J. M.; Manuccia, T. J.; Nowak, R. J. J. Electrochem. Soc. 1986, 133, 951. 75. Sammells, A. F.; Pujare, N. U. J. Electrochem. Soc. 1986, 133, 1270. 76. Cen, L.; Neoh, K. G. and Kang, E. –T. Adv. Mater. 2005, 17, 1656. 77. Sampanthar, J. T.; Neoh, K. G.; Tan, K. L.; Kan, E. T.; Ng, S. W. Adv. Mater. 2000, 12, 1536. 78. Ko H. C.; Lee H.; Moon B. et al. Adv. Funct. Mater. 2005 , 15, 905. 79. Ryu, J. H.; Lee, J. H.; Han, S. J.; Suh, K. D. Macromol. Rapid Commun. 2006, 27, 1156. 80. Bonhoふte, P.; Gogniat, E.; Campus, F.; Walder1, L.; Graぴtzel, M. Displays 1999, 20, 137. 81. Rougier, A.; Marcel, C.; Bouessay, I.; Blyr, A.; Naghavi, N.; Dupont, L.; Leriche, J. B.; Tarascon, J. M. Proceedings of the J. Electrochem. Soc., ECS, San Francisco, Battery session, 2001. 82. Balan, A.; Baran, D. and Toppare, L. J. Mater. Chem. 2010, 20, 9861. 83. Hizalan, G.; Balan, A.; Baran, D. and Toppare, L. J. Mater. Chem. 2011, 21, 1804. 84. (a) Liou, G. S.; Hsiao, S. H.; Su, T. X. J. Mater. Chem. 2005, 15, 1812; (b) Liou, G. S.; Yang, Y. L.; Su, Y. O. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 2587; (c) Liou, G. S.; Hsiao, S. H.; Chen, H. W. J. Mater. Chem. 2006, 16, 1831; (d) Liou, G. S.; Hsiao, S. H.; Huang, N. K.; Yang, Y. L. Macromolecules 2006, 39, 5337; (e) Liou, G. S.; Chen, H. W.; Yen, H. J. J Polym. Sci. Part A: Polym. Chem. 2006, 44, 4108; (f) Liou, G. S.; Chen, H. W.; Yen, H. J. Macromol. Chem. Phys. 2006, 207, 1589; (g) Liou, G. S.; Chang, C. W.; Huang, H. M.; Hsiao, S. H. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2004; (h) Liou, G. S.; Yen, H. J.; Chiang, M. C. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 5378. 85. (a) Kung, T. C.; Hsiao, S. H. J. Mater. Chem. 2011, 21, 1746; (b) Kung, Y. C.; Hsiao, S. H. J. Polym. Sci. A: Polym. Chem. 2011, 49, 4830; (c) Huang, L. T.; Yen, H. J. and Liou, G. S. Macromolecules, 2011, 44, 9595; (d) Yen, H. J.; Lin, K. Y. and Liou, G. S. J. Polym. Sci. A: Polym. Chem. 2012, 50, 61; (e) Wang, H. M. and Hsiao, S. H. J. Mater. Chem. C, 2014, 2, 1553; (f) Wang, H. M.; Hsiao, S. H. J. Polym. Sci. A: Polym. Chem. 2014, 52, 1172; (g) Hsiao, S. H. and Cheng, S. L. Polym Int, 2015, 64, 811; (h) Hsiao, S. H.; Lin, J. Y. J. Polym. Sci. A: Polym. Chem. 2016, 54, 644 86. (a) Mazur, S.; Lugg, P. S. and Yarnitzky, C. J. Electrochem. Soc. 1987, 134, 346; (b) Viehbeck, A.; Goldberg, M. J. and Kovac, C. A. J. Electrochem. Soc. 1990, 137, 1460; (c) Wang, L.; Goodloe, G. W.; Stallman, B. J. and Cammarata, V. Chem. Mater. 1996, 8, 1175; (d) Lu, W.; Gao, J. P.; Wang, Z. Y.; Qi, Y.; Sacripante, G. G.; Duff, J. D. and Sundararajan, P. R. Macromolecules, 1999, 32, 8880; (e) Mackinnon, S. M. and Wang, Z. Y. J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 3467; (f) Zhang, J.; Qiao, W.; Wan, X.; Gao, J. P. and Z. Y. Wang Chem. Mater. 2008, 20, 6163. Chapter 2 1. Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and Electrochromic Devices; Cambridge University Press: New York, 2007. 2. Monk, P. M. S “The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4’-Bipyridine” 1998. 3. Cinnsealach, R.; Boschloo, G.; Rao, S. N.; Fitzmaurice, D. Sol. Energy Mater. Sol. Cells 1998, 55, 215. 4. Gadgil, B.; Damlin, P.; Aaritalo, T.; Kvarnstrom, C. Electrochim. Acta, 2014, 133, 268. 5. Palenzuela, J.; Vineuales, A.; Odriozola, I.; Cabanero, G.; Grande, H. J.; Ruiz, V. ACS Appl. Mater. Interfaces, 2014, 6, 14562. 6. Pozo-Gonzalo, C.; Salsamendi, M.; Vi~nuales, A.; Pomposo, J. A.; Grande, H. –J. Sol. Energy Mater. Sol. Cells, 2009, 93, 2093. 7. Rong, Y.; Kim, S.; Su, F.; Myers, D.; Taya, M. Electrochim. Acta 2011, 56, 6230. 8. Iwan, A.; Sek, D. Prog. Polym. Sci. 2011, 36, 1277. 9. Yen, H. J.; Liou, G. S. Polym. Chem. 2012, 3, 255. 10. Yen, H. J.; Chen, C. J.; Liou, G. S. Adv. Funct. Mater. 2013, 23, 5307. 11. Ning, Z.; Tian, H. Chem. Commun. 2009, 37, 5483. 12. Cheng, S. H.; Hsiao, S. H.; Su, T. X.; Liou, G. S. Macromolecules 2005, 38, 307. 13. Liou, G. S.; Hsiao, S. H.; Su, T. X. J. Mate. Chem. 2005, 15, 1812. 14. Liou, G. S.; Yang, Y. L.; Su, Y. L. O. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 2587. 15. Liou, G. S.; Hsiao, S. H.; Chen, H. W. J. Mater. Chem. 2006, 16, 1831. 16. Liou, G. S.; Hsiao, S. H.; Huang, N. K.; Yang, Y. L. Macromolecules 2006, 39, 5337. 17. Liou, G. S.; Chen, H. W.; Yen, H. J. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 4108. 18. Liou, G. S.; Chen, H. W.; Yen, H. J. Macromol. Chem. Phy. 2006, 207, 1589. 19. Liou, G. S.; Chang, C. W.; Huang, H. M.; Hsiao S. H. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 2004. 20. Liou, G. S.; Hsiao, S. H.; Chen, W. C.; Yen, H. J. Macromolecules 2006, 39, 6036. 21. Liou, G. S.; Yen, H. J. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 6094. 22. Yen, H. J.; Liou, G. S. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 1584. 23. Yen, H. J.; Liou, G. S. J. Mater. Chem. 2010, 20, 9886. 24. Yen, H. J.; Lin, H. Y.; Liou, G. S. Chem. Mater. 2011, 23, 1874. 25. Wu, J. H.; Liou, G. S. Adv. Funct. Mater. 2014, 24, 6422. 26. Chang, H. W.; Lin, K. H.; Chueh, C. C.; Liou, G. S.; Chen, W. C. J. Polym. Sci., Part A Polym. Chem. 2009, 47, 4037. 27. Menichetti, S. Chem. Eur. J. 2008, 14, 5747. 28. Li, Y. R.; Michinobu, T. J. Polym. Sci., Part A Polym. Chem. 2012, 50, 2111. Chapter 3 1. Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and Electrochromic Devices; Cambridge University Press: Cambridge, UK, 2007. 2. Green, M. Chem. Ind. 1996, 17, 641. 3. Mortimer, R. J. Chem. Soc. Rev. 1997, 26, 147. 4. Kavanagh, A.; Fraser, K. J.; Byrne, R.; Diamond, D. ACS Appl. Mater. Interfaces 2013, 5, 55. 5. Melendres, C. A.; Lee, P. C.; Meisel, D. J. Electrochem. Soc. 1983, 130, 1523. 6. Huang, Q.; Lu, G.; Shen, H. M.; Chung, M.; Ong, C. N. Med. Res. Rev.2007, 27, 609. 7. Gheeya, J.; Johansson, P.; Chen, Q. R.; Dexheimer, T.; Metaferia, B.; Song, Y. K.; Wei, J. S.; He, J.; Pommier, Y.; Khan, J. Cancer Lett. 2010, 293,124. 8. Kamiya, K.; Hamabe, W.; Tokuyama, S.; Hirano, K.; Satake, T.; Kumamoto, Y. Y.; Yoshida, H.; Mizushina, Y.; Food Chem. 2010, 118, 725. 9. Luzzati, S.; Scharber, M.; Catellani, M.; Giacalone, F.; Segura, J. L.; Martin, N.; Neugebauer, H.; Sariciftci, N. S. J. Phys. Chem. B, 2006, 110, 5351. 10. Gomez, R.; Blanco, R.; Veldman, D.; Segura, J.; Janssen, R. J. Phys. Chem. B, 2008, 112, 4953. 11. Wan, J.; Ferreira, A.; Xia, W.; Chow, C. H.; Takechi, K.; Kamat, P. V.; Jones, G.; Vullev, V. I. J. Photochem. Photobiol. A. 2008, 197, 364. 12. Huang, Y. M.; Zhou, F. F.; Deng, Y.; Zhai, B. G. Solid State Ionics 2008, 179, 1305. 13. Yamamoto, T.; Koizumi, T. A. Polymer, 2007, 48, 5449. 14. Sui, B.; Fu, X. J. Solid State Electrochem 2009, 13, 1889. 15. Shamsipur, M.; Siroueinejad, A.; Hemmateenejad, B.; Abbaspour, A.; Sharghi, H.; Alizadeh, K.; Arshad, S. J. Electroanal. Chem. 2007, 600, 345. 16. Huang, L. T.; Yen, H. J.; Chang, C. W.; Liou, G. S. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 4747. 17. Kung, Y. C.; Hsiao, S. H. J. Mater. Chem. 2011, 21, 1746. 18. Kung, Y. C.; Hsiao, S. H. J. Polym. Sci., Part A Polym. Chem. 2011, 49, 4830. 19. Huang, L. T.; Yen, H. J.; Liou, G. S. Macromolecules, 2011, 44, 9595. 20. Yen, H. J.; Lin, K. Y.; Liou, G. S. J. Polym. Sci., Part A Polym. Chem. 2012, 50, 61. 21. Wang, H. M. and Hsiao, S. H. J. Mater. Chem. C, 2014, 2, 1553. 22. Wang, H. M.; Hsiao, S. H. J. Polym. Sci., Part A Polym. Chem. 2014, 52, 1172. 23. Hsiao, S. H. and Cheng, S. L. Polym. Int. 2015, 64, 811. 24. Hsiao, S. H.; Lin, J. Y. J. Polym. Sci., Part A Polym. Chem. 2016, 54, 644. 25. Li, Y. R.; Michinobu, T. J. Polym. Sci., Part A Polym. Chem. 2012, 50, 2111. 26. Mondal, J. H.; Ahmed, S. and Das, D. Langmuir 2014, 30, 8290. 27. O’Boyle, N. M.; Pollock, J. K.; Carr, M.; Knox, A. J. S.; Nathwani, S. M.; Wang, S.; Caboni, L.; Zisterer, D. M.; Meegan, M. J. J. Med. Chem. 2014, 57, 9370. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49166 | - |
dc.description.abstract | 本論文分成四個章節,第一章為總體序論。第二章探討含有TPA和NTPA分別與紫精混摻之電致變色元件的設計與製作。第三章提及新型雙極式電致變色材料1-(2-(4-(bis(4-methoxyphenyl)amino)phenoxy)ethyl)-1'-ethyl-[4,4’-bipyridine]-
1,1'-diium tetraflouroborate (TPA-Vio) 以及 2-(4-(bis(4-methoxyphenyl)amino)phenoxy)anthracene-9,10-dione (TPA-AQ) 之合成、電化學及電致變色行為。第四章為結論。具電活性三苯胺之雙極式電致變色元件之設計與製備、電化學及電致變色性質已被研究與比較。藉由引入助電荷平衡之陰極變色材料,所得到的元件在變色時可擁有兩個顏色疊加,且具有良好的電致變色穩定性。另外,此概念顯著地在氧化過程中減少其工作電壓且也改善了著色時間及褪色時間。這些結果概述不管是混摻亦或是共價鍵結的方式引入紫精都是既簡易且可實現的方法並可得到高效率的電致變色元件。 | zh_TW |
dc.description.abstract | This study has been divided into four chapters. Chapter 1 is general introduction. Chapter 2 presents the design and fabrication of the electrochromic devices containing tris(4-methoxyphenyl)amine (TPA) and 4,4′-dimethoxy-4′′-(dimethylamino)tripheny-
lamine (NTPA) blended with heptyl viologen tetrafluoroborate (HV) respectively. Chapter 3 mentioned that synthesis, electrochemical and electrochromic properties of novel ambipolar electrochromic materials 1-(2-(4-(bis(4-methoxyphenyl)amino)phenoxy)ethyl)-1'-ethyl-[4,4’-bipyridine]-1,1'-d-iium tetraflouroborate (TPA-Vio) and 2-(4-(bis(4-methoxyphenyl)amino)phenoxy)anthracene-9,10-dione (TPA-AQ) respectively using in electrochromic device. Chapter 4 is conclusions. The design, fabrication, electrochemical and electrochromic properties of ambipolar electrochromic device based on electroactive triphenylamine were investigated and compared. With introduction of cathodic electrochromic materials which are served as charge balance agents, the obtained devices revealed two colors combination during coloring state and excellent electrochromic stability. Moreover, this consideration notably reduced driving voltage over the oxidative procedure and improved switching time for coloration and decoloration. These results demonstrate conclusively that introduction of viologen for blending and covalent-bonding could be a simplistic and attainable approach to obtain highly efficient electrochromic devices. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:18:00Z (GMT). No. of bitstreams: 1 ntu-105-R03549025-1.pdf: 7306827 bytes, checksum: 3f4c2bfda53c75fc3c8b773fecfc0850 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | TABLE OF CONTENTS
ACKNOWLEDGEMENTS II ABSTRACT (in English) III ABSTRACT (in Chinese) IV TABLE OF CONTENTS V LIST OF TABLES XI LIST OF FIGURES XII CHAPTER 1 1 CHAPTER 2 46 CHAPTER 3 83 CHAPTER 4 118 CHAPTER 1 General Introduction 1.1 DEVELOPMENT OF ELECTROCHROMISM 2 1.2 ELECTROCHROMIC SYSTEMS 6 1.2.1 Transition-metal Oxides 6 Tungsten Trioxide (WO3) 6 Iridium Oxide (IrO2) 7 1.2.2 Coordination Complexes 8 Prussian blue (PB) 8 Phthalocyanines 10 1.2.3 Conductive Polymers 11 1.2.4 Arylamine-Based Polymers 14 1.3 VIOLOGENS 19 1.3.1 Reduction Behavior 20 1.3.2 Development of Viologen in Electrochromic device 21 1.3.3 Research development on polymers combined with viologens 23 1.4 ELECTROCHROMISM IN AMBIPOLAR SYSTEM .29 1.5 RESEARCH MOTIVATION 37 REFERENCES AND NOTES 38 CHAPTER 2 Electrochemical, Electrochromic and Switching Properties of Ambipolar Electrochromic Device based on Hybrids of Triphenylamine Derivative and Heptyl Viologen ABSTRACT OF CHAPTER 2 47 2.1 INTRODUCTION 48 2.2 EXPERIMENTAL SECTION 50 2.2.1 Materials 50 2.2.2 Monomer Synthesis 50 tris(4-methoxyphenyl)amine (TPA) 50 4,4′- dimethoxy-4′′-(dimethylamino)triphenylamine (NTPA) 51 2.2.3 Fabrication of the Electrochromic Device 52 2.2.4 Measurement 53 2.3 RESULTS AND DISCUSSION 54 2.3.1 Monomer Synthesis 54 2.3.2 Monomer Properties 57 Electrochemical Properties 57 Spectroelectrochemistry 59 Electrochemical Properties of the Electrochromic Devices 63 Spectroelectrochemistry of the Electrochromic Device 64 Electrochemical Properties of the Ambipoar Electrochromic Device 68 Spectroelectrochemistry of the Ambipolar Electrochromic Device 69 Electrochromic Switching Studies 72 2.4 SUMMARY 80 REFERENCES AND NOTE 81 CHAPTER 3 Electrochemical, Electrochromic and Switching Properties of Ambipolar Electrochromic Materials Based on Triphenylamine with Viologen or Anthraquinone via covalent bonding ABSTRACT OF CHAPTER 3 84 3.1 INTRODUCTION 85 3.2 EXPERIMENTAL SECTION 87 3.2.1 Materials 87 3.2.2 Monomer Synthesis 87 1-ethyl-[4,4'-bipyridin]-1-ium bromide (1) 87 4-(tert-Butyldimethylsilanyloxy)phenylamine (2) 88 4-{[tert-Butyl(dimethyl)silyl]oxy}-N,N-bis(4-methoxyphenyl)aniline (3) 89 4-[Bis(4-methoxyphenyl)amino]phenol (4) 89 4-(2-bromoethoxy)-N,N-bis(4-methoxyphenyl)aniline (TPA-OBr) 90 1-(2-(4-(bis(4-methoxyphenyl)amino)phenoxy)ethyl)-1'-ethyl-[4,4’-bipyridine]-1,1'-diium- tetraflouroborate (TPA-Vio) 91 2-(4-(bis(4-methoxyphenyl)amino)phenoxy)anthracene-9,10-dione (TPA-AQ) 92 3.2.3 Fabrication of the Electrochromic Device 93 3.2.4 Measurement 93 3.3 RESULTS AND DISCUSSION 95 3.3.1 Monomer Synthesis 95 3.3.2 Monomer Properties 100 Electrochemical Properties 100 Spectroelectrochemistry 102 Electrochemical and Electrochromic Properties of EC device with ambipolar electrochromic materials 104 Electrochromic Switching Studies 108 3.4 SUMMARY 115 REFERENCES AND NOTES 116 LIST OF TABLES Chapter 1 Table 1.1 Color of polymers derived from electropolymerization of arylamines 15 Table 1.2 images and Color Coordinates of Electrochromic Polyimide Films at Indicated Applied Voltages. 36 Chapter 2 Table 2.1 Electrochemical properties of individual electrochromic materials 58 Table 2.2 Optical and Electrochemical Data Collected for Coloration Efficiency Measurements of device with TPA/HV 77 Table 2.3 Optical and Electrochemical Data Collected for Coloration Efficiency Measurements of device with NTPA/HV 79 Chapter 3 Table 3.1 Electrochemical properties of ambipolar electrochromic materials 101 Table 3.2 Optical and Electrochemical Data Collected for Coloration Efficiency Measurements of device with TPA-Vio 112 Table 3.3 Optical and Electrochemical Data Collected for Coloration Efficiency Measurements of device with TPA-AQ 114 LIST OF FIGURES CHAPTER 1 Figure 1.1 Structure of PEDOT 3 Figure 1.2 Photographs of two different states of a 1×1 m electrochromic windows (ECW) fabricated with a carbon-based electrode 4 Figure 1.3 Side views of the electrochromic windows (ECW) for a vehicle: (a) bleached state, and (b) colored state 5 Figure 1.4 Photographs of (a) Anti-glare back mirrors and (b) E-papers 5 Figure 1.5 Structures of the selection of porphyrins and phthalocyanines. 11 Figure 1.6 The typical conducting polymers 12 Figure 1.7 Chemical structures of all polymers characterized with colors corresponding to the doped state (D), neutral state (N), and intermediate state (I). 13 Figure 1.8 15 Figure 1.9 16 Figure 1.10 Chemical structure of the polyamides and their electrochromism at the different applied potential. 17 Figure 1.11 Chemical structure of the copolyamide and its electrochromism at the different applied potential. 18 Figure 1.12 4,4’-bipyridinium ion strucure 19 Figure 1.13 Steps in the production of gold nanoparticle-functionalized PVBC nanoparticles 24 Figure 1.14 Reaction route used to synthesize the viologen grafted LDPE films 25 Figure 1.15 (a) Structure of [P(BEDOTPh-2V)] (b) Photographs of device based on [P(BEDOTPh-2V)] at various applied poteneials (vs.Ag/Ag+). 26 Figure 1.16 Schematic representation of the viologen-modified porous polymeric microspheres in the manufactured ECD device (A). Images of the device (B) in the OFF state (left) and in the ON state (right). 27 Figure 1.17 Principle of signal amplification by a nanocrystalline film. 27 Figure 1.18 (a) p-Doping electronic absorption spectra (b) n-doping electronic absorption spectra and (c) colors of the PTBT-DA12 film in 0.1 M TBAPF6/MeCN solution. 31 Figure 1.19 Spray coated PTBTTh (above) and PTBTPh (below) in their neutral 31 fully oxidized states (in 0.1 M TBAPF6/ACN).83 31 Figure 1.20 Electrochromic behavior of poly(amine–amide–imide) PAAI-2M film on the ITO-coated glass substrate. 33 Figure 1.21 Electrochromic behavior of novel ambipolar polyimide. 33 Figure 1.22 Spectroelectrohemistry of polyimide 3a thin film (0.2 mmthick) on an ITO-coated glass substrate 34 Figure 1.23 First anodic CV scans of the cast films of polyimides 3d, t-Bu-3d, and MeO-3d on the ITO-coated glass substrates. 35 CHAPTER 2 Figure 2.1 IR spectra of compound 2. 56 Figure 2.2 (a) 1H NMR and (b) 13C NMR spectra of compound 2 in DMSO-d6. 56 Figure 2.3 Cyclic voltammograms of the 0.001 M electrochromic materials (a) TPA, (b) NTPA, (c) HV scans to 2nd state and (d) HV scans to 1st state 58 Figure 2.4 Electrochromic behavior at applied potentials from 0.0 to (a) 0.9, (b) 1.0 and (c) -0.6 (V vs. Ag/AgCl) of 0.001 M electrochromic materials (a) TPA, (b) NTPA and (c) HV in propylene carbonate containing 0.1 M TBABF4. Scan rate = 50 mV/s. 61 Figure 2.5 Cyclic voltammetric diagrams of electrochromic device of (a) TPA, (b) NTPA and (c) HV over 1 cyclic scan at a scan rate of 50 mV/s. 63 Figure 2.6 (a) UV–Vis absorption spectra, (b) UV–Vis transmittance spectra, (c) CIE 1976 color diagram, and (d) EC behavior of EC device with TPA 65 Figure 2.7 (a) UV–Vis absorption spectra, (b) UV–Vis transmittance spectra, (c) CIE 1976 color diagram, and (d) EC behavior of EC device with NTPA 66 Figure 2.8 (a) UV–Vis absorption spectra, (b) UV–Vis transmittance spectra, (c) CIE 1976 color diagram, and (d) EC behavior of EC device with HV 67 Figure 2.9 Cyclic voltammetric diagrams of the ambipolar electrochromic device of (a) TPA/HV and (b) NTPA/HV 68 Figure 2.10 (a) UV–Vis absorption spectra, (b) UV–Vis transmittance spectra, (c) CIE 1976 color diagram, and (d) EC behavior of EC device with TPA/HV 70 Figure 2.11 (a) UV–Vis absorption spectra, (b) UV–Vis transmittance spectra, (c) CIE 1976 color diagram, and (d) EC behavior of EC device with NTPA/HV. 71 Figure 2.12 Calculation of optical switching time of (a) 724 and (b) 743 nm at the applied potential of (a) 2.6 V and (b) 2.4 V and (b) current–time curves of electrochromic devices with (a) TPA and (b) NTPA. 73 Figure 2.13 Calculation of optical switching time of (a)(d) 606 nm, (b) 724 nm and (d) 743 nm at the applied potential of 1.2 V (2.13(a) and 2.13(b)) and 0.9 V (2.13(d) and 2.13(e)) and current–time curves of electrochromic device with (c) TPA/HV and (f) NTPA/HV, respectively. 74 Figure 2.14 Electrochromic switching between 0 and 1.0 V of electrochromic device with TPA/HV 76 Figure 2.15 Electrochromic switching between 0 and 1.0 V of electrochromic device with NTPA/HV 78 CHAPTER 3 Figure 3.1 (a) 1H NMR and (b) 13C NMR spectra of compound TPA-OBr in DMSO-d6. 97 Figure 3.2 (a) 1H NMR and (b) 13C NMR spectra of compound TPA-Vio in DMSO-d6. 98 Figure 3.3 (a) 1H NMR and (b) 13C NMR spectra of compound TPA-AQ in DMSO-d6. 99 Figure 3.4 Cyclic voltammograms of ambipolar electrochromic materials (a) TPA-Vio and (b) TPA-AQ in propylene carbonate containing 0.1 M TBABF4 (for anodic and cathodic processes) at a scan rate of 50 mV/s. 101 Figure 3.5 Electrochromic behavior at applied potentials from 0.0 to (a) 1.0 and (b) -0.5 (V vs. Ag/AgCl) of 0.001 M ambipolar electrochromic materials TPA-Vio in propylene carbonate containing 0.1 M TBABF4. Scan rate = 50 mV/s. 103 Figure 3.6 Electrochromic behavior at applied potentials from 0.0 to (a) 0.9 and (b) -1.4 (V vs. Ag/AgCl) of 0.001 M ambipolar electrochromic materials TPA-AQ in propylene carbonate containing 0.1 M TBABF4. Scan rate = 50 mV/s. 103 Figure 3.7 Cyclic voltammetric diagrams of the electrochromic device of (a) TPA-Vio and (b) TPA-AQ over 1 cyclic scan at a scan rate of 50 mV/s. 105 Figure 3.8 (a) UV–Vis absorption spectra, (b) UV–Vis transmittance spectra, (c) CIE 1976 color diagram, and (d) EC behavior of EC device with TPA-Vio 106 Figure 3.9 (a) UV–Vis absorption spectra, (b) UV–Vis transmittance spectra, (c) CIE 1976 color diagram, and (d) EC behavior of EC device with TPA-AQ 107 Figure 3.10 Calculation of optical switching time of (a) 606 nm, (b) 724 nm, (d) 535 nm and (f) 734 nm at the applied potential of (a)(b) 1.2 V and (d)(f) 1.8 V and current–time curves of electrochromic devices with (c) TPA-Vio and (f) TPA-AQ respectively. 109 Figure 3.11 Electrochromic switching between 0 and 1.2 V of electrochromic device with TPA-Vio 111 Figure 3.12 Electrochromic switching between 0 and 1.8 V of electrochromic device with TPA-AQ 113 | |
dc.language.iso | en | |
dc.title | 具電活性三苯胺之雙極式電致變色元件 | zh_TW |
dc.title | Ambipolar Electrochromic Devices Based on Electroactive Triphenylamine | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭勝輝,李宗銘,龔宇睿 | |
dc.subject.keyword | 三苯胺,紫精,電致變色元件,雙極式, | zh_TW |
dc.subject.keyword | triphenylamine,viologen,electrochromic device,ambipolar, | en |
dc.relation.page | 120 | |
dc.identifier.doi | 10.6342/NTU201602815 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 7.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。