請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49150
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳正宏 | |
dc.contributor.author | Jui-Fen Tsai | en |
dc.contributor.author | 蔡汭芬 | zh_TW |
dc.date.accessioned | 2021-06-15T11:17:29Z | - |
dc.date.available | 2017-08-25 | |
dc.date.copyright | 2016-08-25 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-20 | |
dc.identifier.citation | 毛绪美、梁杏、王凤林 & 韩庆之 (2011) 多源 4He 及其积累年龄揭示的深层地下水更新能力。地球科学进展, 26(4), 417-425。
王士榮、李馨慈、林宏奕、徐國錦、張閔翔、黃智昭 & 李振誥 (2012) 大甲溪流域中上游地區地下水出水量評估。農業工程學報,58(4), 1-14。 江政鴻 (2002) 嘉義中崙地區天然逸氣來源與自動化監測結果。國立台灣大學地質科學研究所碩士論文,共 110 頁。 何信昌、陳勉銘 (2000) 台灣地質圖 台中圖幅。經濟部中央地質調查所。 吳念儒 (2009) 綠島火山岩中晶體與溫泉噴氣氦同位素比值之研究。國立台灣大學地質科學研究所學位論文,共70頁。 李光敦 (2002) 水文學。五南圖書出版股份有限公司。 李曉芬 (2004) 大屯火山區火山氣體成份及其冷凝水之氫氧同位素組成。國立台灣大學地質科學研究所碩士論文,共 93 頁。 汪中和 (1995) 嘉義地區地下水之碳、氫、氧同位素組成。行政院國家科學委員會專題研究計畫成果報告,共45頁。 翁健三 (2009) 臺中地區頭嵙山層的沉積環境分析。國立臺灣海洋大學應用地球科學研究所碩士論文,共62頁。 財團法人工業技術研究院 (2005) 臺灣地區地下水觀測網第三期九十四年度計畫-文地質鑽探(旋鑽)調查及水文分析計畫成果報告。經濟部中央地質調查所共160頁。 財團法人工業技術研究院 (2008) 臺灣地區地下水觀測網第三期九十七年度計畫-水文地質鑽探(旋鑽)調查及水文分析計畫成果報告。經濟部中央地質調查所,共135頁。 財團法人工業技術研究院 (2011) 台灣山區地下水資源調查研究整體計畫-第一期-台灣中段山區流域水文地質調查及圖幅彙編(2/4)。經濟部中央地質調查所。 財團法人成大研究發展基金會 (2012) 臺灣山區地下水資源調查研究整體計畫─第一期 臺灣中段山區地下水資源調查與評估(3/4)。經濟部中央地質調查所。 財團法人農業工程研究中心 (2013) 103年度中水局轄區測站流量測定。經濟部水利署中區水資源局。 國立交通大學 (2015) 地下水水文地質與補注模式研究-補注區劃設與資源量評估(3/4):地下水補注區與水平衡評估。經濟部中央地質調查所,共200頁。 莊謹綸 (2015) 台灣中部山區地下水及河流之地球化學示蹤劑研究。國立台灣大學地質科學研究所碩士論文,1-172。 逢筱芳 (1984) 台灣岩石天然放射核種分析。國立清華大學原子科學研究所碩士論文。 陳文山、鄂忠信、陳勉銘、楊志成、張益生、劉聰桂、洪崇勝、謝凱旋、葉明官、吳榮章、柯炯德、林清正 & 黃能偉 (2000) 上-更新世臺灣西部前陸盆地的演化-沉積層序與沉積物組成的研究。經濟部中央地質調查所彙刊,第13期,第137-156頁。 陳文福、呂學諭 & 劉聰桂 (2010) 台灣地下水之氧化還原狀態與砷濃度。農業工程學報,56 (2),57-70。 陳艾荻 (2010) 台灣溫泉水中溶解氣成分研究。臺灣大學地質科學研究所學位論文,1-91。 彭宗仁 (2005) 台灣地區地下水觀測網第三期-九十四年度水文地質調查研究計畫-地下水穩定氫氧同位素研究(2/3)。經濟部中央地質調查所。 彭宗仁 (2006) 台灣地區地下水觀測網第三期-九十五年度水文地質調查研究計畫-地下水穩定氫氧同位素研究(3/3)。經濟部中央地質調查所。 彭宗仁、董奇矗、陳琦玲 & 汪中和 (2008) 南投名間地下水 NO3-之來源與轉化。中華農學會報,9 (4),305-325。 彭宗仁、董奇矗、陳琦玲、范家華、朱戩良、林毓雯 & 劉滄棽 (2008) 南投名間農業區與城鎮區地下水水質特徵比較。中華水土保持學報,39(3), 241-253。 彭宗仁、劉聰桂 (2007) 地下水觀測網水文地質調查研究-地下水環境同位素與水質研究(1/2)。經濟部中央地質調查所。 彭宗仁、劉聰桂 (2008) 地下水觀測網水文地質調查研究-地下水環境同位素與水質研究(2/2)。經濟部中央地質調查所。 經濟部中央地質調查所 (2005) 經濟部中央地質調查所年報年報 九十四年。 經濟部中央地質調查所 (2014) 潛返地心:地質大探索 中部地區 經濟部中央地質調查所 (2015) 臺中盆地地質敏感區(G0005)劃定計畫書。 經濟部水利署中區水資源局 (2007) 中水局轄區測站流量測定成果報告。 經濟部水利署中區水資源局 (2010) 大安大甲溪水源聯合運用輸水工程可行性規劃-地質調查與鑽探專題報告。 經濟部水利署水利規劃試驗所 (2007) 台中盆地做為地下水庫可能性之探討專題計畫書。 經濟部水利署水利規劃試驗所 (2010) 台中盆地地下水資源利用調查評估(2/3)。 經濟部水利署水利規劃試驗所 (2011) 台中盆地地下水資源利用調查評估(3/3)。 Aeschbach-Hertig, W., & Solomon, D. K. (2013). Noble gas thermometry in groundwater hydrology. In The noble gases as geochemical tracers (pp. 81-122). Springer Berlin Heidelberg. Andrews, J. N., & Lee, D. J. (1979). Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and palaeoclimatic trends. Journal of Hydrology, 41(3-4), 233-252. Andrews, J. N., Giles, I. S., Kay, R. L. F., Lee, D. J., Osmond, J. K., Cowart, J. B., ... & Gale, J. (1982). Radioelements, radiogenic helium and age relationships for groundwaters from the granites at Stripa, Sweden. Geochimica et Cosmochimica Acta, 46(9), 1533-1543. Bonotto, D. M., & Caprioglio, L. (2002). Radon in groundwaters from Guarany aquifer, South America: environmental and exploration implications. Applied radiation and isotopes, 57(6), 931-940. Cecil, L. D., & Green, J. R. (2000). Radon-222. In Environmental tracers in subsurface hydrology (pp. 175-194). Springer US. Chadha, D. K. (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, 7(5), 431-439. Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. CRC press. Clark, J. F., Davisson, M. L., Hudson, G. B., & Macfarlane, P. A. (1998). Noble gases, stable isotopes, and radiocarbon as tracers of flow in the Dakota aquifer, Colorado and Kansas. Journal of Hydrology, 211(1), 151-167. Clarke, W. B., Jenkins, W. J., & Top, Z. (1976). Determination of tritium by mass spectrometric measurement of 3He. The international journal of applied radiation and isotopes, 27(9), 515-522. Cook, P. G., Favreau, G., Dighton, J. C., & Tickell, S. (2003). Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. Journal of Hydrology, 277(1), 74-88. Coplen, T. B., & Kendall, C. (2000). Stable hydrogen and oxygen isotope ratios for selected sites of the US Geological Survey's NASQAN and benchmark surface-water networks (No. USGS-OFR-00-160). GEOLOGICAL SURVEY RESTON VA. Coplen, T. B., Herczeg, A. L., & Barnes, C. (2000). Isotope engineering—using stable isotopes of the water molecule to solve practical problems. In Environmental tracers in subsurface hydrology (pp. 79-110). Springer US. Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702-1703. Darling, W. G., & Ármannsson, H. (1989). Stable isotopic aspects of fluid flow in the Krafla, Námafjall and Theistareykir geothermal systems of northeast Iceland. Chemical Geology, 76(3-4), 197-213. Durrance, E. M. (1986). Radioactivity in geology: principles and applications. Ellins, K. K., Roman-Mas, A., & Lee, R. (1990). Using 222Rn to examine groundwater/surface discharge interaction in the Rio Grande de Manati, Puerto Rico. Journal of Hydrology, 115(1-4), 319-341. Elsinger, R. J., & Moore, W. S. (1983). Gas exchange in the Pee Dee River based on 222Rn evasion. Geophysical Research Letters, 10(6), 443-446. Froehlich, K., Gibson, J. J., & Aggarwal, P. (2001, April). Deuterium excess in precipitation and its climatological significance. In Study of Environmental Change Using Isotope Techniques. Proc. Intern. Conf (pp. 54-66). Gaillardet, J., Dupré, B., Louvat, P., & Allegre, C. J. (1999). Global silicate weathering and CO 2 consumption rates deduced from the chemistry of large rivers. Chemical geology, 159(1), 3-30. García, G. M., Hidalgo, M. D. V., & Blesa, M. A. (2001). Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Hydrogeology Journal, 9(6), 597-610. Gat, J. R. (1980). The isotopes of hydrogen and oxygen in precipitation. In Handbook of environmental isotope geochemistry. Vol. 1. Gat, J. R., & Gonfiantini, R. (1981). Stable isotope hydrology. Deuterium and oxygen-18 in the water cycle. Graham, D. W. (2002). Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs. Reviews in mineralogy and geochemistry, 47(1), 247-317. Hall, F. R., Boudette, E. L., & Olszewski Jr, W. J. (1987). Geologic controls and radon occurrence in New England. Han, Y. L., Kuo, M. T., Fan, K. C., Chiang, C. J., & Lee, Y. P. (2006). Radon distribution in groundwater of Taiwan. Hydrogeology Journal, 14(1-2), 173-179. Hasegawa, T., Mahara, Y., Nakata, K., Habermehl, M. A., Taniguchi, M., & Holman, I. P. (2010). Verification of 4 He and 36 Cl dating of very old groundwater in the Great Artesian Basin, Australia. International Association of Hydrologists Selected Papers, Groundwater Response to Changing Climate, 99-111. Heilweil, V. M., Solomon, D. K., Gingerich, S. B., & Verstraeten, I. M. (2009). Oxygen, hydrogen, and helium isotopes for investigating groundwater systems of the Cape Verde Islands, West Africa. Hydrogeology journal, 17(5), 1157-1174. Hoefs, J., & Hoefs, J. (1997). Stable isotope geochemistry (Vol. 201). Berlin: Springer. Hoehn, E., & Von Gunten, H. R. (1989). Radon in groundwater: A tool to assess infiltration from surface waters to aquifers. Water Resources Research, 25(8), 1795-1803. Kamel, S., Dassi, L., Zouari, K., & Abidi, B. (2005). Geochemical and isotopic investigation of the aquifer system in the Djerid-Nefzaoua basin, southern Tunisia. Environmental Geology, 49(1), 159-170. Kipfer, R., Aeschbach-Hertig, W., Peeters, F., & Stute, M. (2002). Noble gases in lakes and ground waters. Reviews in mineralogy and geochemistry, 47(1), 615-700. Lee, K. S., Wenner, D. B., & Lee, I. (1999). Using H-and O-isotopic data for estimating the relative contributions of rainy and dry season precipitation to groundwater: example from Cheju Island, Korea. Journal of Hydrology, 222(1), 65-74. Lewis, E. L., & Perkin, R. G. (1978). Salinity: its definition and calculation. Journal of Geophysical Research: Oceans, 83(C1), 466-478. Lis, G., Wassenaar, L. I., & Hendry, M. J. (2008). High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Analytical Chemistry, 80(1), 287-293. Lott, D. E. (2001). Improvements in noble gas separation methodology: A nude cryogenic trap. Geochemistry, Geophysics, Geosystems, 2(12). Mamyrin, B. A., & Tolstikhin, I. N. (1984). Helium isotopes in nature, volume 3 of Developments in Geochemistry. McLean, W., Jankowski, J., & Lavitt, N. (2000). Groundwater quality and sustainability in an alluvial aquifer, Australia. Groundwater, past achievements and future challenges. A Balkema, Rotterdam, 567-573. McNeely, R. N., Neimanis, V. P., & Dwyer, L. (1979). Water quality sourcebook: a guide to water quality parameters. In Water Quality Sourcebook: A guide to water quality parameters. Environment Canada. Musgrove, M., & Banner, J. L. (1993). Regional ground-water mixing and the origin of saline fluids: Midcontinent, United States. SCIENCE-NEW YORK THEN WASHINGTON-, 259, 1877-1877. Ozima, M., & Podosek, F. A. (2002). Noble gas geochemistry. Cambridge University Press. Peng, T. R., Wang, C. H., Huang, C. C., Fei, L. Y., Chen, C. T. A., & Hwong, J. L. (2010). Stable isotopic characteristic of Taiwan's precipitation: A case study of western Pacific monsoon region. Earth and Planetary Science Letters, 289(3), 357-366. Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions American Geophysical Union, 25(6), 914-928. Postgate, J. R. (1984). The Sulfate-Reducing Bacteria, Cambridge Univer. Sakai, H., & Matsubaya, O. (1977). Stable isotopic studies of Japanese geothermal systems. Geothermics, 5(1), 97-124. Sanjo, K. (1991). Isotope hydrology of Mt. Tsukuba. Science reports of the Institute of Geoscience, University of Tsukuba. Section A, Geographical sciences, 12, 1-36. Senturk, F., Bursali, S., Omay, Y., Ertan, I., Guler, S., Yalcin, H., & Onhan, E. (1970). Isotope techniques applied to groundwater movement in the Konya plain. In Isotope hydrology 1970. Proceedings of a symposium. Sharp, Z. (2007). Principles of stable isotope geochemistry (p. 344). Upper Saddle River, NJ: Pearson Education. Smith, A. Y., & Pournis, S. (1976). Radon methods in uranium exploration. In Exploration for uranium ore deposits. Solomon, D. K. (2000). 4He in groundwater. In Environmental tracers in subsurface hydrology (pp. 425-439). Springer US. Sturm, P., & Knohl, A. (2010). Water vapor δ 2 H and δ 18 O measurements using off-axis integrated cavity output spectroscopy. Atmospheric Measurement Techniques, 3(1), 67-77. Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4(6). Tanner, A. B. (1980). Radon migration in the ground: a supplementary review. Natural radiation environment III, 1, 5-56. Thilagavathi, R., Chidambaram, S., Prasanna, M. V., Thivya, C., & Singaraja, C. (2012). A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India. Applied Water Science, 2(4), 253-269. Voronov, A. N. (2004). Radon-rich waters in Russia. Environmental Geology, 46(5), 630-634. Wang, C. H., Kuo, C. H., Peng, T. R., Chen, W. F., Liu, T. K., Chiang, C. J., ... & Hung, J. J. (2001). Isotope characteristics of Taiwan groundwaters. Western Pacific Earth Sciences, 1(4), 415-428. Weiss, R. F. (1970, August). The solubility of nitrogen, oxygen and argon in water and seawater. In Deep Sea Research and Oceanographic Abstracts (Vol. 17, No. 4, pp. 721-735). Elsevier. Weiss, R. F. (1971). Solubility of helium and neon in water and seawater. Journal of Chemical & Engineering Data, 16(2), 235-241. Wilhelm, E., Battino, R., & Wilcock, R. J. (1977). Low-pressure solubility of gases in liquid water. Chemical reviews, 77(2), 219-262. Yang, T. F., Lan, T. F., Lee, H. F., Fu, C. C., Chuang, P. C., Lo, C. H., ... & Lee, C. S. (2005). Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochemical Journal, 39(5), 469-480. Yu, P., Wang, C. H., & Yang, T. F. (1998). The use of tritium to determine the mean residence time of the groundwater in the Pingtung Plain. In The XIII Symposium of Southeast Asian Geotechnics Conference (Vol. 16, No. 20, pp. 727-732). © 2016 DURRIDGE Company Inc. Durridge Radon Instrumentation. (http://www.durridge.com/products.shtml) ©2005 Arizona Board of Regents. Read Disclaimer. SAHRA-Isotopes and Hydrology. (http://web.sahra.arizona.edu/programs/isotopes/index.html) 水利署地理資訊倉儲中心 (http://gic.wra.gov.tw/gic/Water/Space/Main.aspx) 王乾盈(2004)台灣車籠埔斷層鑽探計畫野外考察 (http://resource.blsh.tp.edu.tw/taipei-earth/study/TCDP.htm) 交通部中央氣象局全球資訊網 (http://www.cwb.gov.tw/V7/index.htm) 經濟部中央地質調查所,水文地質資料庫 (http://hydro.moeacgs.gov.tw/011.htm) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49150 | - |
dc.description.abstract | 台灣的降雨時空分布不均使得雨水無法充分儲存利用,地下水因而在緩衝及補充水資源的不足上相當重要,臺中盆地由厚礫石層組成,儲水條件良好,若能掌握該區的地下水特性將對水資源管理有莫大的助益。本研究在2015年的乾、濕兩季,於臺中盆地採集近百個水樣,包含雨水、溪水及地下水,系統分析氫氧同位素、陰陽離子、氦同位素及水中溶解氣,希望了解水體之間及水體與圍岩間的關係,並探討流體的可能來源。
氫氧穩定同位素分析結果顯示,臺中地區之水體皆落於天水線上;溪水的氫氧穩定同位素值(δ18O、δD)較當地雨水小,反映溪水源自較高海拔地區之降雨;地下水之δ18O與δD接近於溪水,故河川入滲應為主要的補注方式,且濕季溪水的貢獻量較大,經質量平衡計算,約有89%的地下水來自溼季溪水。另外,盆地南北兩部分的地下水之δ18O值也有顯著差異,其補注水源依據地理位置及氧同位素值略可分為三種,分別為大甲溪、大里溪及貓羅溪加灌溉水源,盆地中央部分的補注現象較弱,地表水與地下水組成顯著不同。 盆地內之地下水大多屬於新水(<AD 1952),離子性質為Ca(HCO3)2類型,氦同位素比值為1RA (RA =空氣的3He/4He比值),溶解氣源於大氣;唯霧峰站的離子性質屬於NaHCO3類,為受壓含水層環境,氦同位素比值顯示有地殼訊號 (0.3 RA~0.5 RA),且前人研究指出該站為臺中盆地已測的最老水體 (~27,000年),封閉環境及極長的滯留時間讓水體得以不斷累積地殼逸氣及含水層鈾釷礦物衰變所釋放的4He,進而改變氦同位素比值。 水中溶解氡氣濃度受控於圍岩中鈾釷含量以及岩體性質。臺中盆地地下水之水氡濃度介於7~30 Bq/L,低值集中在泥層分布較多的盆地中段,推測地下水流動受阻使得氡氣不易被傳遞及累積。另外,一般情況下,溪水中的氡氣會迅速逸散至大氣而使濃度低於偵測極限(<0.2 Bq/L),但在乾季時期,盆地中段的溪水中卻偵測到了1~3 Bq/L 的水氡濃度,反映採樣點附近有高水氡濃度之地下水流入其中。利用地下水與地表水的氡氣濃度計算後,河川中約有3-13%的水來自地下水。 此研究顯示氫氧同位素為追蹤臺中盆地水體關聯性的良好工具,而溶解氣成分則可幫助了解水體與圍岩的關係以及地下水與地表水的交互作用,為臺中盆地之地下水提供更多面向的重要資訊。 | zh_TW |
dc.description.abstract | The groundwater is an important water resource in Taiwan as a result of the uneven spatial and temporal distribution of rainfall. Taichung basin in central Taiwan, possessing a conglomerate formation with high-quality groundwater, is an ideal site for natural water reservoir. Therefore, we systematically analyzed stable isotopes (hydrogen and oxygen), helium isotopes and compositions of dissolved gases of nearly a hundred water samples, including rainwater, stream water and groundwater collected from Taichung area in wet and dry seasons of the year 2015 in order to understand the relationship between water bodies and host rocks and to clarify the sources of fluids.
In the δ18O vs. δD plot, all samples present a linear trend similar to local meteoric water, indicating a meteoric origin. However, river samples are relative lighter than rain samples; it demonstrates that the rivers are mainly recharged from precipitation of high-elevation areas with a lighter isotopic composition. On the other hand, groundwater is mainly recharged by river water. Because the seasonal isotopic variation of river samples is significant, we calculated relative contribution by seasons using the mass balance equation. Results show that about 89% of groundwater reflects the characteristics of precipitation in rainy season. Furthermore, there are many recharging sources including Da-Jia River, Da-Li River, Maoluo River and irrigation water to explain the variation of groundwater isotopic compositions from north to south. However, the rates of groundwater recharge from rivers at central basin might be slow because that the characteristics between rivers and groundwater are quite different. The prominent types of groundwater in the basin are Ca(HCO3)2 type and the helium isotopic ratio in dissolved gases are close to 1 RA (RA = 3He/4He ratio of air), which imply they are very fresh water (recharging water) except the sample from Wu-Feng well. Wu-Feng well exhibits NaHCO3 types of water and only has 0.3 RA~0.5 RA, reflecting crustal signals. This sample also has an older C-14 age (~27000 yrs.) than others (<200 yrs.), implying that water-bodies are confined in an isolated environment to interact with rocks and the dissolved helium is likely affected by radiogenic 4He of surrounding rocks and crustal helium flux. Aqueous radon is controlled by the uranium concentration of surrounding rock and rock textures. For Taichung basin, which is composed of alluvial gravels, there might not be significant differences between uranium concentrations; therefore, the difference in the water radon should come from other factors. The radon concentration ranges from 7-30 Bq/L in Taichung basin and it shows a lower value in the central basin where there is a mud layer distributed. Therefore, it is presumed that the mud layer will prevent radon from migration and accumulation. On the other hand, rivers usually contains undetectable radon (<0.2 Bq/L) because radon will rapidly escape to the atmosphere. However, river samples from the central part of basin have radon concentrations ranging between 1 and 3 Bq/L, reflecting that the sampling sites are in the vicinity of points of groundwater inflow. Using the difference of radon concentration between the groundwater and river water to estimate, there are approximately 3-13% of river water recharging from groundwater. This study illustrates the utility of hydrogen and oxygen isotopes to trace the groundwater source and determine the seasonal contribution ratios of river water to groundwater recharge, and demonstrates the advantage of using dissolved gas to investigate the groundwater-host rocks interaction. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:17:29Z (GMT). No. of bitstreams: 1 ntu-105-R03224111-1.pdf: 14272558 bytes, checksum: bfff11ec57caed96dfd390a256cea14d (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 摘要 ................................ ................................ ................................ ....................... III
Abstract................................ ................................ ................................ ....................... V 第一章 緒論 ................................ ................................ ................................ ..................... 1 1.1 緣起 ................................ ................................ ................................ ......................... 1 1.2 研究動機與目的 ................................ ................................ ................................ ..... 1 第二章 研究原理及文獻回顧 ................................ ................................ ......................... 3 2.1 氫氧同位素 ................................ ................................ ................................ ............. 3 2.2 水中溶解氡氣 ................................ ................................ ................................ ......... 6 2.3 氦同位素 ................................ ................................ ................................ ................. 8 第三章 研究區域 ................................ ................................ ................................ ............. 9 3.1 地形及水系 ................................ ................................ ................................ ........... 10 3.1.1 地形 ................................ ................................ ................................ ............... 10 3.1.2 水系 ................................ ................................ ................................ ............... 12 3.2 地質背景 ................................ ................................ ................................ ............... 13 3.2.1 盆地之演化 ................................ ................................ ................................ ... 13 3.2.2 地層概況 ................................ ................................ ................................ ....... 14 3.3 水文地質 ................................ ................................ ................................ ............... 16 3.4 地球化學之相關研究 ................................ ................................ ........................... 20 第四章 材料與方法 ................................ ................................ ................................ ....... 22 4.1 採樣地點及時間 ................................ ................................ ................................ ... 22 4.2 水體採集方法 ................................ ................................ ................................ ....... 24 4.3 水化學分析 ................................ ................................ ................................ ........... 26 4.3.1 陰陽離子濃度 ................................ ................................ ............................... 26 4.3.2 氫氧同位素 ................................ ................................ ................................ ... 29 4.3.3 溶解無機碳 ................................ ................................ ................................ ... 31 4.4 溶解氣分析 ................................ ................................ ................................ ........... 32 4.4.1 一般溶解氣成分 ................................ ................................ ........................... 32 4.4.2 氦同位素分析 ................................ ................................ ............................... 37 4.4.3 現地水氡測量 ................................ ................................ ............................... 40 第五章 結果與討論 ................................ ................................ ................................ ....... 42 5.1 氫氧同位素 ................................ ................................ ................................ ........... 42 5.1.1 雨水 ................................ ................................ ................................ ............... 42 5.1.2 地表水 ................................ ................................ ................................ ........... 44 5.1.3 地下水 ................................ ................................ ................................ ........... 48 5.2 陰陽離子濃度 ................................ ................................ ................................ ....... 51 5.2.1 主要離子 ................................ ................................ ................................ ....... 51 5.2.2 其他離子 ................................ ................................ ................................ ....... 58 5.3 氦同位素比值 ................................ ................................ ................................ ....... 61 5.4 溶解氣成分 ................................ ................................ ................................ ........... 64 5.4.1 一般溶解氣 ................................ ................................ ................................ ... 64 5.4.2 惰性氣體含量 ................................ ................................ ............................... 68 第六章 綜合討論 ................................ ................................ ................................ ........... 74 6.1 時序性變化 ................................ ................................ ................................ ........... 74 6.1.1 雨水 ................................ ................................ ................................ ............... 74 6.1.2 地表水 ................................ ................................ ................................ ........... 77 6.1.3 地下水 ................................ ................................ ................................ ........... 80 6.2 地表水與下的交互作用 ................................ ................................ ............... 81 6.2.1 氫氧同位素 ................................ ................................ ................................ ... 82 6.2.2 水氡濃度 ................................ ................................ ................................ ....... 82 6.2.3 地下水與河道之關係 ................................ ................................ ................... 85 6.3 水體來源及流動模式 ................................ ................................ ........................... 91 6.4 氣體來源及流動模式 ................................ ................................ ........................... 98 6.4.1 氦氣 ................................ ................................ ................................ ............. 100 6.4.2 二氧化碳 ................................ ................................ ................................ ..... 102 6.4.3 氡氣 ................................ ................................ ................................ ............. 102 6.5 從山區到平原地下水特性變化 ................................ ................................ .......... 111 第七章 結論 ................................ ................................ ................................ ................. 115 參考文獻 ................................ ................................ ................................ ..................... 116 附錄一:地下水觀測站之基本資訊 附錄一:地下水觀測站之基本資訊 附錄一:地下水觀測站之基本資訊 (水質資料擷自中央地調查所 2015 地下水 文地質與補注模式研究,水溫為兩季平均 ) ................................ ............. 123 附錄二:溪水、泉雨自來之採樣資訊 ................................ ................... 125 附錄三:地下水之氫氧同位素組成 (‰) ................................ ................................ 126 附錄四:其他水體之氫氧同位素組成 (‰) ................................ ............................ 127 附錄五:地下水陰陽離子成分 (單位為 ppm; n.d. ppm; n.d. :not detected) not detected)not detected) ......................... 129 附錄六:其他水體之陰陽離子成分 附錄六:其他水體之陰陽離子成分 附錄六:其他水體之陰陽離子成分 附錄六:其他水體之陰陽離子成分 附錄六:其他水體之陰陽離子成分 附錄六:其他水體之陰陽離子成分 附錄六:其他水體之陰陽離子成分 附錄六:其他水體之陰陽離子成分 附錄六:其他水體之陰陽離子成分 附錄六:其他水體之陰陽離子成分 附錄六:其他水體之陰陽離子成分 附錄六:其他水體之陰陽離子成分 附錄六:其他水體之陰陽離子成分 附錄六:其他水體之陰陽離子成分 附錄六:其他水體之陰陽離子成分 (單位為 單位為 單位為 ppm ; n.d. ppm ; n.d. ppm ; n.d. :not detected ; not detected ; not detected ; not detected ; not detected ; not detected ; not detected ; ─:not applicable)applicable) applicable)applicable)applicable) ................................ ................................ ................................ ..... 131 附錄七:地下水樣 6 c. Headspace 6 c. Headspace 6 c. Headspace 6 c. Headspace6 c. Headspace 6 c. Headspace6 c. Headspace內所含之氣體毫莫爾數 內所含之氣體毫莫爾數 (n.d. :not detected) not detected)not detected) 133 附錄八:地下水樣本之溶解氡氣與氦同位素比值 ................................ ............... 135 附錄九:其餘水樣之溶解氡氣與氦同位素比值 ................................ ................... 136 | |
dc.language.iso | zh-TW | |
dc.title | 臺中地區地下水之地球化學特徵 | zh_TW |
dc.title | Geochemical Characteristics of Groundwater in Taichung Area, Central Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉聰桂,呂學諭,彭宗仁 | |
dc.subject.keyword | 臺中盆地,地下水,氡氣,氦同位素,氫氧同位素,陰陽離子,溶解氣, | zh_TW |
dc.subject.keyword | Taichung basin,groundwater,dissolved gas,helium isotope,hydrogen and oxygen isotopes,aqueous radon,ion concentration, | en |
dc.relation.page | 136 | |
dc.identifier.doi | 10.6342/NTU201602946 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-20 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 13.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。