請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49149
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛景中 | |
dc.contributor.author | Chen-Yi Wu | en |
dc.contributor.author | 吳貞儀 | zh_TW |
dc.date.accessioned | 2021-06-15T11:17:27Z | - |
dc.date.available | 2018-08-26 | |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-19 | |
dc.identifier.citation | [1] M. Karas, D. Bachmann and F. Hillenkamp, Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical Chemistry 1985, 57 (14), 2935-2939.
[2] M. Karas, D. Bachmann, U. e. Bahr and F. Hillenkamp, Matrix-assisted ultraviolet laser desorption of non-volatile compounds. International journal of mass spectrometry and ion processes 1987, 78, 53-68. [3] K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida and T. Matsuo, Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 1988, 2 (8), 151-153. [4] J. Delmore, A. Appelhans and E. Peterson, Tube ion source for the study of chemical effects in surface ionisation. International journal of mass spectrometry and ion processes 1991, 108 (2), 179-187. [5] F. Kotter and A. Benninghoven, Secondary ion emission from polymer surfaces under Ar+, Xe+ and SF5+ ion bombardment. Applied Surface Science 1998, 133 (1), 47-57. [6] K. Boussofiane-Baudin, G. Bolbach, A. Brunelle, S. Della-Negra, P. Hakansson and Y. Le Beyec, Secondary ion emission under cluster impact at low energies (5–60 keV); influence of the number of atoms in the projectile. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1994, 88 (1), 160-163. [7] Y. Le Beyec, Cluster impacts at keV and MeV energies: Secondary emission phenomena. International journal of mass spectrometry and ion processes 1998, 174 (1), 101-117. [8]Domon, B. and Aebersold, R, Mass Spectrometry and protein analysis’, Special Reviews 2006, 312(5771), pp. 212–217. [9] 蔡有光, 質譜儀技術於蛋白質體分析之應用Mass Spectrometry in Proteome Analysis, Available at: http://bc.imb.sinica.edu.tw/images/biotech/16_18.pdf [10] CUATRECASAS, P. ‘Agarose derivatives for purification of protein by affinity chromatography’, Nature 1970, 228(5278), pp. 1327–1328. [11] Scopes, R.K. (2013) Protein purification: Principles and practice. [12] O’Farrell, P.H. ‘High resolution two-dimensional electrophoresis of proteins’, Journal of Biological Chemistry 1975, 250(10), pp. 4007–4021. [13] Link, A.J. and Eng, J. ‘Direct analysis of protein complexes using mass spectrometry: Abstract: Nature biotechnology’, Nature Biotechnology 1999, 17(7), pp. 676–682. [14] Cate, D.M., Adkins, J.A., Mettakoonpitak, J. and Henry, C.S. ‘Recent developments in paper-based Microfluidic devices’, Analytical Chemistry 2015, 87(1), pp. 19–41. [15] Martinez, A.W. and Phillips, S.T. ‘Diagnostics for the developing world: Microfluidic paper-based analytical devices’, Analytical Chemistry 2010, 82(1), pp. 3–10. [16] Lahr, R.H. and Wallace, G.C.‘Raman characterization of Nanoparticle transport in Microfluidic paper-based analytical devices (μPADs)’, ACS Applied Materials & Interfaces 2015, 7(17), pp. 9139–9146. [17] Yu, W.W. and White, I.M. ‘Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper’, Analytical Chemistry 2010, 82(23), pp. 9626–9630. [18] Leriche, E.-D. and Hubert-Roux, M. ‘Direct TLC/MALDI–MS coupling for modified polyamidoamine dendrimers analyses’, Analytica Chimica Acta 2014, 808, pp. 144–150. [19] D. A. Skoog, Principles of instrumental analysis. third ed.; Saunders college publishing: 1984; pp 528-531. [20] H. Beckey, Field desorption mass spectrometry: A technique for the study of thermally unstable substances of low volatility. International Journal of Mass Spectrometry and Ion Physics 1969, 2 (6), 500-502. [21] H. Winkler and H. Beckey, Field desorption mass spectrometry of Peptides. Biochemical and biophysical research communications 1972, 46 (2), 391-398. [22] H. R. Morris, M. Panico, M. Barber, R. S. Bordoli, R. D. Sedgwick and A. Tyler, Fast atom bombardment: a new mass spectrometric method for Peptide sequence analysis. Biochemical and biophysical research communications 1981, 101 (2), 623-631. [23] M. Barber, R. S. Bordoli, R. D. Sedgwick and A. N. Tyler, Fast atom bombardment of solids (FAB): A new ion source for mass spectrometry. Journal of the Chemical Society, Chemical Communications 1981, (7), 325-327. [24] M. Karas and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry 1988, 60 (20), 2299-2301. [25] R. C. Beavis, B. T. Chait and K. Standing, Matrix‐assisted laser‐desorption mass spectrometry using 355 nm radiation. Rapid Communications in Mass Spectrometry 1989, 3 (12), 436-439. [26] M. Karas and U. Bahr, Laser desorption ionization mass spectrometry of large biomolecules. TrAC Trends in Analytical Chemistry 1990, 9 (10), 321-325. [27] M. Andersson, M. R. Groseclose, A. Y. Deutch and R. M. Caprioli, Imaging mass spectrometry of proteins and Peptides: 3D volume reconstruction. Nat Methods 2008, 5 (1), 101-108. [28] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong and C. M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71. [29] L. Konermann and D. Douglas, Equilibrium unfolding of proteins monitored by electrospray ionization mass spectrometry: distinguishing two‐state from multi‐state transitions. Rapid Communications in Mass Spectrometry 1998, 12 (8), 435-442. [30] D. Torgerson, R. Skowronski and R. Macfarlane, New approach to the mass spectroscopy of non-volatile compounds. Biochemical and biophysical research communications 1974, 60 (2), 616-621. [31] R. Macfarlane and D. Torgerson, Californium-252 plasma desorption mass spectroscopy. Science 1976, 191 (4230), 920-925. [32] R. G. Cooks, Advances in Mass Spectrometry. Heyden & Son: London: 1989; Vol. 11A. [33]Lee, M.S. (2012) Mass Spectrometry handbook. [34] K. J. Wu and R. W. Odom, Matrix-enhanced secondary ion mass spectrometry: a method for molecular analysis of solid surfaces. Analytical Chemistry 1996, 68 (5), 873-882. [35] L. Adriaensen, F. Vangaever, J. Lenaerts and R. Gijbels, Matrix‐enhanced secondary ion mass spectrometry: the influence of MALDI matrices on molecular ion yields of thin organic films. Rapid Communications in Mass Spectrometry 2005, 19 (8), 1017-1024. [36] B. Hagenhoff, ToF-SIMS: Surface Analysis by Mass Spectrometry. IM Publications and Surface Spectra Limited: 2001; pp 285-308. [37]Adriaensen, L., Vangaever, F. and Gijbels, R. ‘Metal-assisted secondary ion mass Spectrometry: Influence of ag and au deposition on molecular ion yields’, Analytical Chemistry 2004, 76(22), pp. 6777–6785. [38] V. Vorsa, T. Kono, K. F. Willey and N. Winograd, Femtosecond photoionization of ion beam desorbed aliphatic and aromatic amino acids: fragmentation via α-cleavage reactions. The Journal of Physical Chemistry B 1999, 103 (37), 7889-7895. [39] K. Wittmaack, Secondary-ion emission from silicon bombarded with atomic and molecular noble-gas ions. Surface Science 1979, 90 (2), 557-563. [40] S. Johar and D. Thompson, Spike effects in heavy-ion sputtering of Ag, Au and Pt thin films. Surface Science 1979, 90 (2), 319-330. [41] H. Andersen and H. Bay, Nonlinear effects in heavy‐ion sputtering. Journal of Applied Physics 1974, 45 (2), 953-954. [42] M. Blain, S. Della‐Negra, H. Joret, Y. Le Beyec and E. Schweikert, A new experimental method for determining secondary ion yields from surfaces bombarded by complex heterogeneous ions. Journal of Vacuum Science & Technology A 1990, 8 (3), 2265-2268. [43] Z. Postawa, B. Czerwinski, M. Szewczyk, E. J. Smiley, N. Winograd and B. J. Garrison, Enhancement of sputtering yields due to C60 versus Ga bombardment of Ag {111} as explored by molecular dynamics simulations. Analytical Chemistry 2003, 75 (17), 4402-4407. [44] Z. Postawa, B. Czerwinski, M. Szewczyk, E. J. Smiley, N. Winograd and B. J. Garrison, Microscopic insights into the sputtering of Ag {111} induced by C60 and Ga bombardment. The Journal of Physical Chemistry B 2004, 108 (23), 7831-7838. [45] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, C60: buckminsterfullerene. Nature 1985, 318 (6042), 162-163. [46] Mahoney, C.M. (2013) Cluster secondary ion mass Spectrometry: Principles and applications. [47] E. Schweikert, M. J. van Stipdonk and R. D. Harris, A comparison of desorption yields from C60+ to atomic and polyatomic projectiles at keV energies. Rapid Communications in Mass Spectrometry 1996, 10 (15), 1987-1991. [48] S. Wong, R. Hill, P. Blenkinsopp, N. Lockyer, D. Weibel and J. Vickerman, Development of a C60+ ion gun for static SIMS and chemical imaging. Applied Surface Science 2003, 203, 219-222. [49] D. Weibel, S. Wong, N. Lockyer, P. Blenkinsopp, R. Hill and J. C. Vickerman, A C60 primary ion beam system for time of flight secondary ion mass spectrometry: its development and secondary ion yield characteristics. Analytical Chemistry 2003, 75 (7), 1754-1764. [50] N. Sanada, A. Yamamoto, R. Oiwa and Y. Ohashi, Extremely low sputtering degradation of polytetrafluoroethylene by C60 ion beam applied in XPS analysis. Surface and Interface Analysis 2004, 36 (3), 280-282. [51] N. Davies, D. Weibel, P. Blenkinsopp, N. Lockyer, R. Hill and J. Vickerman, Development and experimental application of a gold liquid metal ion source. Applied Surface Science 2003, 203, 223-227. [52] D. Touboul, F. Kollmer, E. Niehuis, A. Brunelle and O. Laprevote, Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J Am Soc Mass Spectrom 2005, 16 (10), 1608-1618. [53] E. A. Jones, N. P. Lockyer and J. C. Vickerman, Mass spectral analysis and imaging of tissue by ToF-SIMS—The role of buckminsterfullerene, C60+, primary ions. International Journal of Mass Spectrometry 2007, 260 (2), 146-157. [54] J. S. Fletcher, N. P. Lockyer, S. Vaidyanathan and J. C. Vickerman, TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Analytical Chemistry 2007, 79 (6), 2199-2206. [55] Blau, K. and King, G.S. Handbook of derivatives for chromatography edited by introduction to the handbook. Available at: http://tocs.ulb.tu-darmstadt.de/60094621.pdf [56] Stahl, E. (1990) Thin-layer chromatography: A laboratory handbook. Edited by Egon Stahl. Germany: Springer-Verlag Berlin and Heidelberg GmbH & Co. K. [57] Chromatography (no date) Available at: http://juang.bst.ntu.edu.tw/ECX/Pur3.htm [58] Link, A.J. and Eng, J. ‘Direct analysis of protein complexes using mass spectrometry: Abstract: Nature biotechnology’, Nature Biotechnology 1999, 17(7), pp. 676–682. [59] Gatlin, C.L. and Kleemann, G.R. ‘Protein identification at the low Femtomole level from silver-stained gels using a new Fritless Electrospray interface for liquid Chromatography–Microspray and Nanospray mass Spectrometry’, Analytical Biochemistry 1998, 263(1), pp. 101–93. [60] Erickson, D. and Li, D. ‘Integrated microfluidic devices’, Analytica Chimica Acta 1994, 507(1), pp. 11–26. [61] Tetala, K.K.R. and Vijayalakshmi, M.A. ‘A review on recent developments for biomolecule separation at analytical scale using microfluidic devices’, Analytica Chimica Acta 2016, 906, pp. 7–21. [62]A. Ghanem, T. Ikegami, Recent advances in silica-based monoliths: preparations, characterizations and applications J. Sep. Sci., 34 (2011), pp. 1945–1957 [63]5.Dolnik, V., Liu, S., Jovanovich, S., Electrophoresis 2000, 21, 41. [64] Brown, L. and Koerner, T. (2005) ‘Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents’, Lab on a Chip, 6(1), pp. 66–73. [65] Hong, T.-F. and Ju, W.-J. ‘Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser’, Microfluidics and Nanofluidics 2010, 9(6), pp. 1125–1133. [66] Chan, A.S., Danquah, M.K., Agyei, D., Hartley, P.G. and Zhu, Y. ‘A simple Microfluidic chip design for fundamental Bioseparation’, Journal of Analytical Methods in Chemistry, 2014, pp. 1–6. [67] McDonald, J.C. and Whitesides, G.M. ‘Poly(dimethylsiloxane) as a material for fabricating Microfluidic devices’, Accounts of Chemical Research 2002, 35(7), pp. 491–499. [68] Carrilho, E. and Martinez, A.W. ‘Understanding wax printing: A simple Micropatterning process for paper-based Microfluidics’, Analytical Chemistry 2009, 81(16), pp. 7091–7095. [69] Renault, C. and Koehne, J. ‘Three-Dimensional wax Patterning of paper Fluidic devices’, Langmuir 2014, 30(23), pp. 7030–7036. [70] Tarso Garcia, P. and Garcia Cardoso, T.M. ‘A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays’, RSC Advances 2014, 4(71), p. 37637. [71] Li, X. and Ballerini, D.R. (2012) ‘A perspective on paper-based microfluidics: Current status and future trends’, 6(1). [72] Martinez, A.W. and Phillips, S.T. ‘Patterned paper as a platform for inexpensive, low-volume, portable Bioassays’, Angewandte Chemie International Edition 2007, 46(8), pp. 1318–1320. [73] OuYang, L. and Wang, C. ‘Electrochromatographic separations of multi-component metal complexes on a microfluidic paper-based device with a simplified photolithography’, RSC Adv 2014, 4(3), pp. 1093–1101. [74] Zhu, W.-J. and Feng, D.-Q. ‘Bienzyme colorimetric detection of glucose with self-calibration based on tree-shaped paper strip’, Sensors and Actuators B: Chemical 2014, 190, pp. 414–418. [75] Pollock, N. and Rolland, J. ‘A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing’, Science translational medicine 2012., 4(152). [76] Zhou, M., Yang, M. and Zhou, F. ‘Paper based colorimetric biosensing platform utilizing cross-linked siloxane as probe’, Biosensors and Bioelectronics 2014, 55, pp. 39–43. [77] Rohrman, B.A. and Richards-Kortum, R.R. ‘A paper and plastic device for performing recombinase polymerase amplification of HIV DNA’, Lab on a Chip 2012, 12(17), p. 3082. [78] Ge, L. and Wang, S. ‘Molecularly imprinted polymer grafted porous au-paper electrode for an Microfluidic Electro-Analytical Origami device’, Advanced Functional Materials 2013, 23(24), pp. 3115–3123. [79] Shi, Z., Wu, X., Gao, L., Tian, Y. and Yu, L. ‘Electrodes/paper sandwich devices for in situ sensing of hydrogen peroxide secretion from cells growing in gels-in-paper 3-dimensional matrix’, Analytical Methods 2014, 6(12), p. 4446.[80] Scida, K., Li, B., Ellington, A.D. and Crooks, R.M. ‘DNA detection using Origami paper analytical devices’, Analytical Chemistry 2013, 85(20), pp. 9713–9720. [81] Zhou, F., Noor, M.O. and Krull, U.J. ‘Luminescence resonance energy transfer-based nucleic acid Hybridization assay on cellulose paper with Upconverting phosphor as donors’, Analytical Chemistry 2014, 86(5), pp. 2719–2726. [82] W. Bigelow, D. Pickett and W. Zisman, Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science 1946, 1 (6), 513-538. [83] R. G. Nuzzo and D. L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society 1983, 105 (13), 4481-4483. [84] Y. Xia and G. M. Whitesides, Soft lithography. Annual review of materials science 1998, 28 (1), 153-184. [85] T. R. Lee, P. E. Laibinis, J. P. Folkers and G. M. Whitesides, Heterogeneous catalysis on platinum and self-assembled monolayers on metal and metal oxide surfaces. Pure and applied chemistry 1991, 63 (6), 821-828. [86] J. P. Folkers, C. B. Gorman, P. E. Laibinis, S. Buchholz, G. M. Whitesides and R. G. Nuzzo, Self-assembled monolayers of long-chain hydroxamic acids on the native oxide of metals. Langmuir 1995, 11 (3), 813-824. [87] A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir--Blodgett to Self--Assembly. Academic press: 2013. [88] L. H. Dubois, B. R. Zegarski and R. G. Nuzzo, Fundamental studies of microscopic wetting on organic surfaces. 2. Interaction of secondary adsorbates with chemically textured organic monolayers. Journal of the American Chemical Society 1990, 112 (2), 570-579. [89] W.-C. Lin, S.-H. Lee, M. Karakachian, B.-Y. Yu, Y.-Y. Chen, Y.-C. Lin, C.-H. Kuo and J.-J. Shyue, Tuning the surface potential of gold substrates arbitrarily with self-assembled monolayers with mixed functional groups. Physical Chemistry Chemical Physics 2009, 11 (29), 6199-6204. [90] Y.-C. Lin, B.-Y. Yu, W.-C. Lin, S.-H. Lee, C.-H. Kuo and J.-J. Shyue, Tailoring the surface potential of gold nanoparticles with self-assembled monolayers with mixed functional groups. J Colloid Interface Sci 2009, 340 (1), 126-130. [91] J. Sagiv, Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society 1980, 102 (1), 92-98. [92] H. Sugimura, A. Hozumi, T. Kameyama and O. Takai, Organosilane self‐assembled monolayers formed at the vapour/solid interface. Surface and Interface Analysis 2002, 34 (1), 550-554. [93] M. E. McGovern, K. M. Kallury and M. Thompson, Role of solvent on the silanization of glass with octadecyltrichlorosilane. Langmuir 1994, 10 (10), 3607-3614. [94]http://www.sigmaaldrich.com/catalog/product/sigma/b6756?lang=enRion=TW. Sigma-Aldrich [95]http://www.sigmaaldrich.com/catalog/product/aldrich/861030?lang=enRion=TW. Sigma-Aldrich [96]http://www.sigmaaldrich.com/catalog/product/sigma/g5386. Sigma-Aldrich. [97]http://www.sigmaaldrich.com/catalog/product/sigma/p1319. Sigma-Aldrich. [98]http://www.phi.com/surface-analysis-techniques/tof-sims.html.Physical Electronics, Inc. 2003, 203, 449-452. [99] Time-of-flight secondary ion mass Spectrometry (TOF-SIMS) (2013) [100] A. Benninghoven, B. Hagenhoff, R. Kock, G. Assman and M. Walter In 5.4 Peptide Analysis by Time-of-flight Secondary Ion, Methods in Protein Sequence Analysis: Proceedings of the 7th International Conference, Berlin, July 3–8, 1988, Springer Science & Business Media: 2012; p 199. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49149 | - |
dc.description.abstract | 二次離子質譜儀(SIMS)在表面分析上具有極高的靈敏度。加上近年來簇離子團(cluster ion)濺射技術的發展,二次離子質譜儀能夠產生高質量的離子破片,並分析未經同位素標記的混合樣品。而飛行式二次離子質譜儀(ToF-SIMS)屬於靜態二次離子質譜儀,在分析樣品後不會對其造成改變,因此也可對分析後的樣品加以回收。另外,利用高度聚焦的一次離子掃描樣品表面能獲得足夠的空間解析度,而且只需要少量的樣品消耗就能取得高解析度的分子分佈影像。但在離子源的濺射下,無法避免分子形成離子破片,造成質譜的複雜性,因此對於混合物的解析較為困難。濾紙層析為分離混合化學物質的一種分析方式。此外,通過使用紙基微流體分析裝置(μPADs),可設計對於物質檢測和分離之方便而便宜的分析平台。因此,對分子混合物的分析,可先以μPADs對混合物做大致的分離,再用TOF-SIMS得微流到影像,以解析分子。近來由於成本低廉與製備容易,紙質的微陣列是與SIMS分析整合的絕佳選擇。在本研究中,μPADs用改性玻璃微纖維紙製造。因為無機的玻璃纖維相較於一般的紙質濾紙在高質量區的質譜中有較低的背景質,較適合用來分析。製作微流道時,玻璃纖維的濾紙會經octadecyltrichlorosilane (OTS)自組裝單層膜(self-assemble monolayer)修飾成疏水性的表面,再使用雷射雕刻機選擇性的製作出親水性的微流道。接著在這些親水的微流道區域中分別滴入1 μL的胜肽(peptide)或色素混合水溶液,而尚未移除的OTS區域則用來作為疏水層。混合溶液在微流道內以不同的ph環境或極性溶液層析後,以脈衝20 kV C60+來獲得二次離子影像,解析混合溶液的分離。結合微流道與二次子質譜儀,其可呈現混合物在微流道內的分離。而分離後的混合物,可在二次離子質譜儀分析後,做進一步的分離。 | zh_TW |
dc.description.abstract | Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is a promising surface characterization technique that is able to address spectral analysis and direct imaging. With recent development of cluster ion beams, molecular species could also be examined according to their molecular weights without the need of labeling. High spatial resolution images of molecular distribution on a surface could also be acquired via using a focused primary ion scanning over the specimen. Besides, operated within the static regime, the specimen is nearly unaltered after analysis hence it is possible to recover the materials after analysis. However, with energetic ion bombardment, fragmentation of molecules is inevitable and results in complicate spectra. As a result, it is more difficult to identify components in a mixture. Paper chromatography is an analytical method that separates mixed chemicals or substances. In addition, with the use of microfluidic paper-based analytical devices (μPADs), a convenient and economical platform design for diagnostic assays can be achieved. Therefore, it is possible to preform rough separation of mixtures with μPADs and then image the microfluidic channel with ToF-SIMS to identify the components. In this work, the μPADs were fabricated with modified glass microfiber paper. The inorganic glass microfiber yield less background in the high mass regime than typical cellulose-based paper and do not interference with molecular analyze. The glass microfiber paper was modified with octadecyltrichlorosilane (OTS) to form a hydrophobic surface and then a laser scriber is used to selectively etch the OTS layer to form hydrophilic channels. 1μL aqueous drop of organic dye or peptides mixture was dripped onto the hydrophilic channels while the remaining OTS served as barrier. After preforming the chromatography under desired polarity or pH in the hydrophilic channel, secondary ion images were acquired with a focused C60+ pulse operated at 20 kV to image the distribution of separated molecules inside the microchannel. By combining μPADs and SIMS technique, the results revealed the separation of mixed compounds in μPADs and the composition of the mixture. The separated compounds could further be recovered after the SIMS identification. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:17:27Z (GMT). No. of bitstreams: 1 ntu-105-R03527023-1.pdf: 28521139 bytes, checksum: 664a7b1606bb7525853618c8d4a463a7 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 III Abstract IV 目錄 V 第一章 緒論 1 第二章 文獻回顧 4 2.1 質譜儀於生物及有機分子之解析 4 2.2 二次離子質譜儀於生物及有機分子分析之應用 10 2.2.1 簇離子與多原子離子應用於二次離子質譜儀之演進 13 2.2.2 簇離子與多原子離子濺射機制 14 2.3 C60+離子源於二次離子質譜儀之應用 16 2.3.1 C 60+離子源濺射於SIMS中的優勢 — 二次離子產率提高 16 2.3.2 C 60+離子源濺射於SIMS中的優勢 — 低損傷機率 18 2.3.3 C 60+離子源濺射於SIMS中的優勢 — 有助影像建立於影像 19 2.4層析法 23 2.4.1蛋白質純化層析法 25 2.5微流體裝置 27 2.5.1微流體裝置之基材 30 2.5.2紙基微流體分析裝置(Microfluidic Paper-based Analytical Devices, μPADs) 33 2.5.3紙基微流道與分析裝置之製作 34 2.5.4紙基分析器及微流道裝置之應用 37 2.6自組裝單層膜(Self-Assemled Monolayer, SAM) 42 2.6.1 有機矽氧烷自組裝膜 45 2.7文獻回顧總結 49 第三章 實驗 50 3.1藥品與基材 50 3.2實驗儀器介紹 53 3.2.1飛行時間二次離子質譜儀(Time-of-Flight Secondary ion Spectrometer, ToF-SIMS ) 53 3.2.2掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 55 3.2.3 CO2雷射雕刻機(CO2 laser scriber) 56 3.3 實驗步驟 57 3.3.1微流道製備 57 3.3.2樣品製備 58 3.3.3ToF-SIMS分析 58 3.3.4 SEM分析 60 第四章 實驗結果與討論 61 4.1微流道的製備 61 4.1.1 SEM 觀察 63 4.2混合樣品之分離 65 4.2.1色素混合溶液於不同條件下之分離 65 4.2.2胜肽混合溶液於不同條件下之分離 75 4.3樣品回收分析 83 第五章 結論 87 參考文獻 88 | |
dc.language.iso | zh-TW | |
dc.title | 以紙基微流道與分子型二次離子質譜術進行分子混合物之分離與檢測 | zh_TW |
dc.title | Coupling of microfluidic paper-based separation devices and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) for analyzing molecular mixtures | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 虞邦英,王榮輝 | |
dc.subject.keyword | 飛行式二次離子質譜儀,紙基微流道,層析法,混合物分離, | zh_TW |
dc.subject.keyword | ToF-SIMS,μPADs,chromatography,molecule separation, | en |
dc.relation.page | 95 | |
dc.identifier.doi | 10.6342/NTU201603013 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 27.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。